Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel nanotechnology collaboration leads to breakthrough in cancer research

01.09.2010
Researchers clear hurdle on path toward gene-therapy treatment for disease
One of the most difficult aspects of working at the nanoscale is actually seeing the object being worked on. Biological structures like viruses, which are smaller than the wavelength of light, are invisible to standard optical microscopes and difficult to capture in their native form with other imaging techniques.

A multidisciplinary research group at UCLA has now teamed up to not only visualize a virus but to use the results to adapt the virus so that it can deliver medication instead of disease.

In a paper published last week in the journal Science, Hongrong Liu, a UCLA postdoctoral researcher in microbiology, immunology and molecular genetics, and colleagues reveal an atomically accurate structure of the adenovirus that shows the interactions among its protein networks. The work provides critical structural information for researchers around the world attempting to modify the adenovirus for use in vaccine and gene-therapy treatments for cancer.

To modify a virus for gene therapy, researchers remove its disease-causing DNA, replace it with medications and use the virus shell, which has been optimized by millions of years of evolution, as a delivery vehicle.

Lily Wu, a UCLA professor of molecular and medical pharmacology and co-lead author of the study, and her group have been attempting to manipulate the adenovirus for use in gene therapy, but the lack of information about receptors on the virus's surface had hampered their quest.

"We are engineering viruses to deliver gene therapy for prostate and breast cancers, but previous microscopy techniques were unable to visualize the adapted viruses," Wu said. "This was like trying to a piece together the components of a car in the dark, where the only way to see if you did it correctly was to try and turn the car on."

To better visualize the virus, Wu sought assistance from Hong Zhou, a UCLA professor of microbiology, immunology and molecular genetics and the study's other lead author. Zhou uses cryo-electron microscopy (cryoEM) to produce atomically accurate three-dimensional models of biological samples such as viruses.

Wu, who is also a researcher at the California NanoSystems Institute (CNSI) at UCLA, learned of Zhou's work after he was jointly recruited to UCLA from the University of Texas Medical School at Houston by the UCLA Department of Microbiology, Immunology and Molecular Genetics and UCLA's CNSI.

About a year ago, once the transfer of Zhou's lab was complete, Sok Boon Koh, one of Wu's students, sought out Zhou's group for their expertise and initiated the collaboration.

"This project exemplifies my excitement about being part of an institute as innovative as CNSI," Zhou said. "Not only am I able to work with state-of-the-art equipment, but because CNSI is the hub for nanotechnology research and commercialization at UCLA, I have the opportunity to collaborate with colleagues across many disciplines."

Working in the Electron Imaging Center for Nanomachines at the CNSI, a lab run by Zhou, the researchers used cryoEM to create a 3-D reconstruction of the human adenovirus from 31,815 individual particle images.

"Because the reconstruction reveals details up to a resolution of 3.6 angstroms, we are able to build an atomic model of the entire virus, showing precisely how the viral proteins all fit together and interact," Zhou said. An angstrom is the distance between the two hydrogen atoms in a water molecule, and the entire adenovirus is about 920 angstroms in diameter.

Armed with this new understanding, Wu and her group are now moving forward with their engineered versions of adenovirus to use for gene therapy treatment of cancer.

"This breakthrough is a great leap forward, but there are still many obstacles to overcome," Wu said. "If our work is successful, this therapy could be used to treat most forms of cancer, but our initial efforts have focused on prostate and breast cancers because those are the two most common forms of cancer in men and women, respectively."

The group is working with the adenovirus because previous research has established it as a good candidate for gene therapy due to its efficiency in delivering genetic materials inside the body. The virus shell is also a safe delivery vehicle; tests have shown that the shell does not cause cancer, a problem encountered with some other virus shells. The adenovirus is relatively non-pathogenic naturally, causing only temporary respiratory illness in 5 to 10 percent of people.

CryoEM enables such a high-resolution reconstruction of biological structures because samples, in water, are imaged directly. In contrast, with X-ray crystallography (the conventional technique for atomic resolution models of biological structures), researchers grow crystal structures replicating the sample and then use diffraction to solve the crystal structure. This technique is limited because it is difficult to grow crystals for all proteins, samples for x-ray crystallography need to be very pure and uniform, and crystals of large complexes may not diffract to high resolution. These limitations resulted in critical areas of the adenovirus surface being unresolved using x-ray crystallography.

The study was funded by the National Cancer Institute and the U.S. Department of Defense.

The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mike Rodewald | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>