Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nano-material combinations produce leap in infrared technology

15.02.2012
Arizona State University researchers are finding ways to improve infrared photodetector technology that is critical to national defense and security systems, as well as used increasingly in commercial applications and consumer products.

A significant advance is reported in a recent article in the journal Applied Physics Letters. It details discovery of how infrared photodetection can be done more effectively by using certain materials arranged in specific patterns in atomic-scale structures.

It's being accomplished by using multiple ultrathin layers of the materials that are only several nanometers thick. Crystals are formed in each layer. These layered structures are then combined to form what are termed "superlattices."

Photodetectors made of different crystals absorb different wavelengths of light and convert them into an electrical signal. The conversion efficiency achieved by these crystals determines a photodectector's sensitivity and the quality of detection it provides, explains electrical engineer Yong-Hang Zhang.

The unique property of the superlattices is that their detection wavelengths can be broadly tuned by changing the design and composition of the layered structures. The precise arrangements of the nanoscale materials in superlattice structures helps to enhance the sensitivity of infrared detectors, Zhang says.

Zhang is a professor in the School of Electrical, Computer and Energy Engineering, one of ASU's Ira A. Fulton Schools of Engineering. He is leading the work on infrared technology research in ASU's Center for Photonics Innovation. More information can be found at the center's Optoelectronics Group website at http://asumbe.eas.asu.edu/

Additional research in this area is being supported by a grant from the Air Force Office of Scientific Research and a new Multidisciplinary University Research Initiative (MURI) program established by the U.S. Army Research Office. ASU is a partner in the program led by the University of Illinois at Urbana-Champaign.

The MURI program is enabling Zhang's group to accelerate its work by teaming with David Smith, a professor in the Department of Physics in ASU's College of Liberal Arts and Sciences, and Shane Johnson, a senior research scientist in the ASU's engineering schools.

The team is using a combination of indium arsenide and indium arsenide antimonide to build the superlattice structures. The combination allows devices to generate photo electrons necessary to provide infrared signal detection and imaging, says Elizabeth Steenbergen, an electrical engineering doctoral student who performed experiments on the supperlattice materials with collaborators at the Army Research Lab.

"In a photodetector, light creates electrons. Electrons emerge from the photodetector as electrical current. We read the magnitude of this current to measure infrared light intensity," she says.

"In this chain, we want all of the electrons to be collected from the detector as efficiently as possible. But sometimes these electrons get lost inside the device and are never collected," says team member Orkun Cellek, an electrical engineering postdoctoral research associate.

Zhang says the team's use of the new materials is reducing this loss of optically excited electrons, which increases the electrons' carrier lifetime by more than 10 times what has been achieved by other combinations of materials traditionally used in the technology. Carrier lifetime is a key parameter that has limited detector efficiency in the past.

Another advantage is that infrared photodetectors made from these superlattice materials don't need as much cooling. Such devices are cooled as a way of reducing the amount of unwanted current inside the devices that can "bury" electrical signals, Zhang says.

The need for less cooling reduces the amount of power needed to operate the photodetectors, which will make the devices more reliable and the systems more cost effective.

Researchers say improvements can still be made in the layering designs of the intricate superlattice structures and in developing device designs that will allow the new combinations of materials to work most effectively.

The advances promise to improve everything from guided weaponry and sophisticated surveillance systems to industrial and home security systems, the use of infrared detection for medical imaging and as a road-safety tool for driving at night or during sand storms or heavy fog.

"You would be able to see things ahead of you on the road much better than with any headlights," Cellek says.

The research team's paper is reported on in the article "One giant leap for IR technology" on the LAB & FAB TALK website of Compound Semiconductor magazine: http://www.compoundsemiconductor.net/csc/news-details/id/19734460/name/One-giant-leap-for-IR-technolog.html

MEDIA CONTACT:
Joe Kullman, joe.kullman@asu.edu
(480) 965-8122 direct line
(480) 773-1364 mobile
Ira A. Fulton Schools of Engineering
Arizona State University
Tempe, Arizona USA
http://engineering.asu.edu/

Joe Kullman | EurekAlert!
Further information:
http://www.asu.edu

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>