Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lego-like modular components make building 3-D 'labs-on-a-chip' a snap

23.09.2014

Newly developed modular components take microfluidic system construction from flat to 3-D and make it cheap, quick and easy

Thanks to new LEGO®-like components developed by researchers at the USC Viterbi School of Engineering, it is now possible to build a 3-D microfluidic system quickly and cheaply by simply snapping together small modules by hand.


This image shows modular fluidic and instrumentation components developed by researchers at the University of Southern California Viterbi School of Engineering.

Credit: USC Viterbi School of Engineering

Microfluidic systems are used in many fields including engineering, chemistry and biotechnology to precisely manipulate small volumes of fluids for use in applications such as enzymatic or DNA analysis, pathogen detection, clinical diagnostic testing, and synthetic chemistry. Traditionally, microfluidic devices are built in a cleanroom on a two-dimensional surface using the same technology developed to produce integrated circuits for the electronics industry.

Though tiny, designing, assembling and testing a new microfluidics system can take a lot of time and money. Building a single device can often require multiple iterations, each of which can take up to two weeks and several thousand dollars to manufacture. And the more complex the system, the higher the number of iterations needed.

"You test your device and it never works the first time," said Krisna Bhargava, materials science graduate student at the USC Viterbi School of Engineering. "If you've grown up to be an engineer or scientist, you've probably been influenced by LEGO® at some point in your childhood. I think every scientist has a secret fantasy that whatever they're building will be as simple to assemble."

Frustrated that reproducing a simple microfluidic circuit could cost him so much time and money, Bhargava set out simplify the construction process. First, he identified the primitive elements commonly used in microfluidic systems, much like how circuitry is broken down in electrical engineering. Basic microfluidic functions would be separated into standardized modular components, not an entirely revolutionary concept. But then, he abandoned the two-dimensional method of building microfluidic devices altogether.

"The founders of the microfluidics field took the same approach as the semiconductor industry: to try to pack in as much integrated structure as possible into a single chip," explained Bhargava. "In electronics, this is important because a high density of transistors has many direct and indirect benefits for computation and signal processing. In microfluidics, our concerns are not with bits and symbolic representations, but rather with the way fluidics are routed, combined, mixed, and analyzed; there's no need to stick with continuing to integrate more and more complex devices."

Borrowing an approach from the electronics industry, which uses prototype boards to build circuits, Bhargava conceived of three-dimensional modular components that encapsulated the common elements of microfluidic systems, as well as a connector that could join the separate components together. Inspired by recent advancements in micron-scale 3D-printing, he and a USC Viterbi research team that included chemical engineering and materials science professor Noah Malmstadt and biomedical engineering graduate student Bryant Thompson, designed computer models for eight modular fluidic and instrumentation components (MFICs, pronounced "em-fix") that would each perform a simple operation. Examples are a "helix" component that can mix two fluid streams and a component that contains an integrated optical sensor for measuring the size of small droplets. The components constructed for this study are approximately 1 cm3, slightly smaller than a standard 6-sided die.

The team's development of these MFICs represents the first attempt to break a device into separate components that can be assembled, disassembled and re-assembled over and over.

"What we've built looks more like a hobby breadboard," said Malmstadt. "You can build a circuit on the cheap with your bare hands."

The team attributes much of the success in the fabrication stage to recent advancements in high-resolution 3-D printing.

"We got the parts back from our contract manufacturer and on the first try they worked out better than I could have dreamed. We were able to build a working microfluidic system that day, as simple as clicking LEGO® blocks together," said Bhargava.

Using the 3-D-printed MFICs, in a matter of hours the team was able to build and test a device that mixed fluids using a helix component and turned the mixture into droplets. Essentially a very long track packed into the same standardized module footprint, the helix component allows adjustments in flow resistance or can serve as an efficient mixer. In microfluidic systems, mixing is dominated by diffusion, and a complex helix can speed up the process by folding the fluid onto itself.

"Trying to control how things mix has always been a major issue in this field just due to the way that fluids flow at very small dimensions," explained Malmstadt. "People have come up with all sorts of ways to twist and turn the channels to try to improve the mixing. The fact that we can do it in three dimensions with this 3-D helix really simplifies things."

Such work lies at the heart of the convergence of science and engineering at USC, where researchers from both fields collaborate to create the tools that make scientific breakthroughs possible.

The team reports their recent invention in "Discrete Elements for 3-D Microfluidics," published in Proceedings of the National Academy of Sciences (PNAS) of the United States of America on September 22. In the paper, the researchers also described how off-the-shelf sensors or other integrated components can be easily incorporated into systems built from MFICs, and demonstrated how the MFICs can size droplets precisely, a useful function for drug delivery or studying microreactor chambers. In detecting droplet size, they found that a 30-cent component yielded results comparable to those from the traditional tool, a $30,000-plus optical microscope.

The result is an extremely cheap, standardized, easy-to-use set of components that can quickly be assembled and re-assembled into a microfluidic system for a mere fraction of the time and cost it currently takes to produce a device to perform the same operation.

"You pull out everything you think is going to work, you stick it together and you test it," said Bhargava. "If it doesn't work, you pull part of it out, swap out some pieces and within a day you've probably come to a final design, and then you can seal the system together and make it permanent. You have a massive productivity gain and a huge cost advantage."

For the past 20 years, microfluidics has been considered a boon for fields like biotechnology and engineering, but has yet to be standardized or universally adopted by the wider community of researchers and in industry. The technology, often dubbed "Lab-on-Chip", has the potential to accelerate the pace of development and provide the means for high-precision experiments to be carried out in low-resource settings. The USC Viterbi team's goal is to finally help that happen.

"MFICs will vastly increase the productivity of a single grad student, postdoc, or lab tech by enabling them to build their own instruments right in the lab and automate their workflow, saving time and money," said Malmstadt. "I think of it as a technological approach to the STEM shortage – make each researcher more powerful by enabling them to do their own automation without having to be an expert in mircrofabrication or having the capability to design complex integrated devices."

The team envisions an open community where designs can be shared via an open-source database. They have plans to develop more components and hope that other researchers will begin using MFICs for their own experiments as well as contribute to the development of new components and systems that will help speed advancements in the microfluidic research community.

"People have done great things with microfluidics technology, but these modular components require a lot less expertise to design and build a system," said Malmstadt. "A move toward standardization will mean more people will use it, and the more you increase the size of the community, the better the tools will become."

###

This research was partially funded by the National Institutes of Health (Award 1R01GM093279).

About the USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi and his wife Erna. Viterbi is the inventor of the Viterbi algorithm, now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 5,000 undergraduate and graduate students, taught by more than 174 tenured and tenure-track faculty, with 60 endowed chairs and professorships. http://viterbi.usc.edu

Megan Hazle | Eurek Alert!

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>