Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lego-like modular components make building 3-D 'labs-on-a-chip' a snap

23.09.2014

Newly developed modular components take microfluidic system construction from flat to 3-D and make it cheap, quick and easy

Thanks to new LEGO®-like components developed by researchers at the USC Viterbi School of Engineering, it is now possible to build a 3-D microfluidic system quickly and cheaply by simply snapping together small modules by hand.


This image shows modular fluidic and instrumentation components developed by researchers at the University of Southern California Viterbi School of Engineering.

Credit: USC Viterbi School of Engineering

Microfluidic systems are used in many fields including engineering, chemistry and biotechnology to precisely manipulate small volumes of fluids for use in applications such as enzymatic or DNA analysis, pathogen detection, clinical diagnostic testing, and synthetic chemistry. Traditionally, microfluidic devices are built in a cleanroom on a two-dimensional surface using the same technology developed to produce integrated circuits for the electronics industry.

Though tiny, designing, assembling and testing a new microfluidics system can take a lot of time and money. Building a single device can often require multiple iterations, each of which can take up to two weeks and several thousand dollars to manufacture. And the more complex the system, the higher the number of iterations needed.

"You test your device and it never works the first time," said Krisna Bhargava, materials science graduate student at the USC Viterbi School of Engineering. "If you've grown up to be an engineer or scientist, you've probably been influenced by LEGO® at some point in your childhood. I think every scientist has a secret fantasy that whatever they're building will be as simple to assemble."

Frustrated that reproducing a simple microfluidic circuit could cost him so much time and money, Bhargava set out simplify the construction process. First, he identified the primitive elements commonly used in microfluidic systems, much like how circuitry is broken down in electrical engineering. Basic microfluidic functions would be separated into standardized modular components, not an entirely revolutionary concept. But then, he abandoned the two-dimensional method of building microfluidic devices altogether.

"The founders of the microfluidics field took the same approach as the semiconductor industry: to try to pack in as much integrated structure as possible into a single chip," explained Bhargava. "In electronics, this is important because a high density of transistors has many direct and indirect benefits for computation and signal processing. In microfluidics, our concerns are not with bits and symbolic representations, but rather with the way fluidics are routed, combined, mixed, and analyzed; there's no need to stick with continuing to integrate more and more complex devices."

Borrowing an approach from the electronics industry, which uses prototype boards to build circuits, Bhargava conceived of three-dimensional modular components that encapsulated the common elements of microfluidic systems, as well as a connector that could join the separate components together. Inspired by recent advancements in micron-scale 3D-printing, he and a USC Viterbi research team that included chemical engineering and materials science professor Noah Malmstadt and biomedical engineering graduate student Bryant Thompson, designed computer models for eight modular fluidic and instrumentation components (MFICs, pronounced "em-fix") that would each perform a simple operation. Examples are a "helix" component that can mix two fluid streams and a component that contains an integrated optical sensor for measuring the size of small droplets. The components constructed for this study are approximately 1 cm3, slightly smaller than a standard 6-sided die.

The team's development of these MFICs represents the first attempt to break a device into separate components that can be assembled, disassembled and re-assembled over and over.

"What we've built looks more like a hobby breadboard," said Malmstadt. "You can build a circuit on the cheap with your bare hands."

The team attributes much of the success in the fabrication stage to recent advancements in high-resolution 3-D printing.

"We got the parts back from our contract manufacturer and on the first try they worked out better than I could have dreamed. We were able to build a working microfluidic system that day, as simple as clicking LEGO® blocks together," said Bhargava.

Using the 3-D-printed MFICs, in a matter of hours the team was able to build and test a device that mixed fluids using a helix component and turned the mixture into droplets. Essentially a very long track packed into the same standardized module footprint, the helix component allows adjustments in flow resistance or can serve as an efficient mixer. In microfluidic systems, mixing is dominated by diffusion, and a complex helix can speed up the process by folding the fluid onto itself.

"Trying to control how things mix has always been a major issue in this field just due to the way that fluids flow at very small dimensions," explained Malmstadt. "People have come up with all sorts of ways to twist and turn the channels to try to improve the mixing. The fact that we can do it in three dimensions with this 3-D helix really simplifies things."

Such work lies at the heart of the convergence of science and engineering at USC, where researchers from both fields collaborate to create the tools that make scientific breakthroughs possible.

The team reports their recent invention in "Discrete Elements for 3-D Microfluidics," published in Proceedings of the National Academy of Sciences (PNAS) of the United States of America on September 22. In the paper, the researchers also described how off-the-shelf sensors or other integrated components can be easily incorporated into systems built from MFICs, and demonstrated how the MFICs can size droplets precisely, a useful function for drug delivery or studying microreactor chambers. In detecting droplet size, they found that a 30-cent component yielded results comparable to those from the traditional tool, a $30,000-plus optical microscope.

The result is an extremely cheap, standardized, easy-to-use set of components that can quickly be assembled and re-assembled into a microfluidic system for a mere fraction of the time and cost it currently takes to produce a device to perform the same operation.

"You pull out everything you think is going to work, you stick it together and you test it," said Bhargava. "If it doesn't work, you pull part of it out, swap out some pieces and within a day you've probably come to a final design, and then you can seal the system together and make it permanent. You have a massive productivity gain and a huge cost advantage."

For the past 20 years, microfluidics has been considered a boon for fields like biotechnology and engineering, but has yet to be standardized or universally adopted by the wider community of researchers and in industry. The technology, often dubbed "Lab-on-Chip", has the potential to accelerate the pace of development and provide the means for high-precision experiments to be carried out in low-resource settings. The USC Viterbi team's goal is to finally help that happen.

"MFICs will vastly increase the productivity of a single grad student, postdoc, or lab tech by enabling them to build their own instruments right in the lab and automate their workflow, saving time and money," said Malmstadt. "I think of it as a technological approach to the STEM shortage – make each researcher more powerful by enabling them to do their own automation without having to be an expert in mircrofabrication or having the capability to design complex integrated devices."

The team envisions an open community where designs can be shared via an open-source database. They have plans to develop more components and hope that other researchers will begin using MFICs for their own experiments as well as contribute to the development of new components and systems that will help speed advancements in the microfluidic research community.

"People have done great things with microfluidics technology, but these modular components require a lot less expertise to design and build a system," said Malmstadt. "A move toward standardization will mean more people will use it, and the more you increase the size of the community, the better the tools will become."

###

This research was partially funded by the National Institutes of Health (Award 1R01GM093279).

About the USC Viterbi School of Engineering

Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi and his wife Erna. Viterbi is the inventor of the Viterbi algorithm, now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 5,000 undergraduate and graduate students, taught by more than 174 tenured and tenure-track faculty, with 60 endowed chairs and professorships. http://viterbi.usc.edu

Megan Hazle | Eurek Alert!

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>