Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers

12.11.2013
Engineering has always taken cues from biology. Natural organisms and systems have done well at evolving to perform tasks and achieve objectives within the limits set by nature and physics.

That is one of the reasons Anette Hosoi, professor of mechanical engineering at the Massachusetts Institute of Technology, studies snails. Snails can move in any direction—horizontally, vertically, and upside down—on various surfaces, be it sand, shells, tree barks or slick walls and smooth glass. One of the reasons for this is the sticky substance on their underbellies, which acts as a powerful lubricant and reduces friction during movement.

By studying and adapting the biological properties of the snail to robotic devices, Hosoi’s group has been able to create a “RoboSnail,” which can climb walls and stick to overhead surfaces much like its living counterpart. Such a device can have potential uses in invasive surgery and oil well drilling, among other applications.

Another organism of interest to Hosoi is the razor clam, which has an amazing ability to dig and wedge itself; it can burrow up to 30 inches in the sand. Hosoi’s “RoboClam” has been developed with the intention of understanding the organism’s behavior and mechanics as well as to explore the possibility of automated digging devices that use less energy than current technology and equipment .

The researchers found that while digging, the clam’s up-and-down movement accompanied by opening and closing of its shell turns sand into the consistency of liquid quicksand. This in turn allows the clam to move quickly through the sand. Similar to the human version, the RoboClam vibrates, changing the solid seabed into fluid, allowing a worm-like foot to push down.

Clam-inspired robotic diggers could find use as automatic tethers and lightweight low-cost anchoring devices for small robotic submarines and even large ships and oil platforms. Devices that burrow into the seabed could also potentially be used as detonators for underwater mines.

Hosoi is not alone in looking to biology to instruct robotics development. Engineers around the world are turning to natural organisms like insects, fish and turtles to inspire the design of robots capable of performing specific tasks that automated devices have traditionally been unable to achieve. Mimicking natural organisms can also aid in improving the efficiency of many applications that are energetically expensive, since biological entities perform the same tasks with much higher efficiency.

It is important to not only copy the animals, but also to understand the biology of their mechanisms in order to take away the key features that allow them to do what they do. These types of biomechanical studies have led to a mutually beneficial partnership between mathematicians and biologists. Biologists can inform mathematical scientists as a goldmine of data is emerging as biology becomes more and more quantified. Mathematicians, in turn, can employ the tools of engineering and computation to analyze this data and offer new insights into the way animals move.

Karthika Muthukumaraswamy | EurekAlert!
Further information:
http://www.siam.org

Further reports about: RoboClam vibrates RoboSnail up-and-down movement worm-like foot

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>