Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An intersection of math and biology: Clams and snails inspire robotic diggers and crawlers

12.11.2013
Engineering has always taken cues from biology. Natural organisms and systems have done well at evolving to perform tasks and achieve objectives within the limits set by nature and physics.

That is one of the reasons Anette Hosoi, professor of mechanical engineering at the Massachusetts Institute of Technology, studies snails. Snails can move in any direction—horizontally, vertically, and upside down—on various surfaces, be it sand, shells, tree barks or slick walls and smooth glass. One of the reasons for this is the sticky substance on their underbellies, which acts as a powerful lubricant and reduces friction during movement.

By studying and adapting the biological properties of the snail to robotic devices, Hosoi’s group has been able to create a “RoboSnail,” which can climb walls and stick to overhead surfaces much like its living counterpart. Such a device can have potential uses in invasive surgery and oil well drilling, among other applications.

Another organism of interest to Hosoi is the razor clam, which has an amazing ability to dig and wedge itself; it can burrow up to 30 inches in the sand. Hosoi’s “RoboClam” has been developed with the intention of understanding the organism’s behavior and mechanics as well as to explore the possibility of automated digging devices that use less energy than current technology and equipment .

The researchers found that while digging, the clam’s up-and-down movement accompanied by opening and closing of its shell turns sand into the consistency of liquid quicksand. This in turn allows the clam to move quickly through the sand. Similar to the human version, the RoboClam vibrates, changing the solid seabed into fluid, allowing a worm-like foot to push down.

Clam-inspired robotic diggers could find use as automatic tethers and lightweight low-cost anchoring devices for small robotic submarines and even large ships and oil platforms. Devices that burrow into the seabed could also potentially be used as detonators for underwater mines.

Hosoi is not alone in looking to biology to instruct robotics development. Engineers around the world are turning to natural organisms like insects, fish and turtles to inspire the design of robots capable of performing specific tasks that automated devices have traditionally been unable to achieve. Mimicking natural organisms can also aid in improving the efficiency of many applications that are energetically expensive, since biological entities perform the same tasks with much higher efficiency.

It is important to not only copy the animals, but also to understand the biology of their mechanisms in order to take away the key features that allow them to do what they do. These types of biomechanical studies have led to a mutually beneficial partnership between mathematicians and biologists. Biologists can inform mathematical scientists as a goldmine of data is emerging as biology becomes more and more quantified. Mathematicians, in turn, can employ the tools of engineering and computation to analyze this data and offer new insights into the way animals move.

Karthika Muthukumaraswamy | EurekAlert!
Further information:
http://www.siam.org

Further reports about: RoboClam vibrates RoboSnail up-and-down movement worm-like foot

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>