Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction Between Design and Functionality

05.08.2010
New BMBF Project on Digital Geometry Processing with Involvement of the MATHEON

For several years already, neither automotive engineering nor life science, architecture or the producers of animation films have been able to work without geometry processing. In the past few years, it has moved into new markets and lastingly changed our communication behaviour. Methods of applied mathematics and resulting efficient and robust algorithms form the basis and driving force of that development.

A team of the DFG Research Center MATHEON is involved and plays a decisive role in that work. Within the framework of a project entitled "GEOMEC – Discrete Geometrical Structural Mechanics for Applications in Virtual and Extended Reality" that is promoted by the Federal Ministry of Education and Research (BMBF), the team of Prof. Ulrich Pinkall of MATHEON has been awarded the subproject "Elasticity with Discrete Differential Geometry". The joint project is coordinated by Junior Professor Max Wardetzky of the Georg-August Universität Göttingen.

Up to now, physical aspects have not been taken into account to their full extent in computer aided geometric design, which has often led to a costly gap between design and functionality in today's production processes. GEOMEC shall close that gap. For example, a designer would like to understand what influence the change of parameters will have on a physical system. At the same time, however, the computing complexity of an exact simulation does still require a considerable expenditure of time and does not allow exact navigation. So it is the aim of the project to overcome that limitation by completely new methods and to be able to describe the physical trajectories in real time and on rough scales. This approach is in particular of importance because it is the extraction of essential information what is of interest to the designer, but never every detail of the actual physical trajectory.

There are being developed new interactive processes and methods that allow to directly integrate the physical-functional aspects into the process of shaping and design. This way, GEOMEC is setting completely new trends in virtual product development and rapid prototyping. The innovative content of the new methods is demonstrated using a selection of concrete applications from the automotive industry as examples.

From a mathematical point of view, these objectives will be achieved by a fusion of methods of structural mechanics with the latest findings in discrete differential geometry (DDG). DDG is located at the interface between numerics and classical differential geometry. It is its approach to maintain and imitate axioms, invariants and fundamental properties of established classical differential geometry at a structural level. Here it has turned out that sophisticated and profound properties of the classical theory often find an amazingly simple and intuitive correspondence in the discrete.

This approach is based on a number of working projects realized by some scientists involved in GEOMEC, such as in particular Ulrich Pinkall and Max Wardetzky, at the MATHEON at an earlier time already. Some of those research projects also relate to the animation of large motion pictures. Realtime simulations of flexible structures considering physical-functional behaviour have caused revolutionary changes especially in the film industry so far - such as in the animation of virtual characters or the simulation of hair, animal coats or fabric close to reality.

But also outside computer graphics, the methods of discrete differential geometry have an extensive potential for industrial applications. Respective examples include digital prototype design, assembly simulation or construction space simulation in automotive engineering, virtual surgery planning or catheter simulation in medicine, fabric simulation and virtual catwalk in the fashion industry, sail simulation in boat building, simulation of flexible cables and tubes in machine and plant construction, rotor blade dynamics of helicopters in aeronautics, but also the simulation of rotors of wind turbines in connection with overall-system simulation using methods of multibody dynamics in the field of renewable energy.

MATHEON-Professor Ulrich Pinkall is responsible for the GEOMEC subproject "Elasticity with Discrete Differential Geometry". Further subprojects are headed by Prof. Marc Alexa, Technische Universität Berlin, School of Electrical Engineering and Computer Science, Prof. Arnd Meyer, Technische Universität Chemnitz, Faculty of Mathematics, Junior Prof. Max Wardetzky, Georg–August Universität Göttingen, Institute for Numerical and Applied Mathematics as well as Dr. Joachim Linn, Fraunhofer-Institut für Techno- und Wirtschaftsmathematik. Volkswagen AG is the cooperation partner.

Further information: Prof. Max Wardetzky, Tel: 0551 3922235, E-mail: wardetzky@math.uni-goettingen.de and Prof. Ulrich Pinkall, Tel.: 030 31424607, E-mail: pinkall@math.tu-berlin.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de
http://www.math.tu-berlin.de/~pinkall/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>