Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instituto de Medicina Molecular, Cenix BioScience, and Alnylam Pharmaceuticals Discover New Pathway for Malaria Infection

12.09.2008
Cenix BioScience GmbH, a leading specialist in advanced RNA interference (RNAi)-based research services, Alnylam Pharmaceuticals, Inc. (Nasdaq: ALNY), a leading RNAi therapeutics company, and the Lisbon-based biomedical research centre Instituto de Medicina Molecular (IMM), today announced the publication of their collaborative study in Cell Host & Microbe, describing the discovery and in vivo validation of scavenger receptor BI (SR-BI), a major regulator of cholesterol uptake by the liver, as a critical host factor for malaria infection.

The new research findings are the first to describe a molecular link between cholesterol metabolism and malaria infection, and the new data could lead to new approaches for the treatment of malaria including use of RNAi therapeutics.

“Malaria represents a major global health concern accounting for approximately two million deaths per year. Nevertheless, the molecular mechanisms for the parasite’s pathophysiology have remained poorly understood,” said Maria Mota, Ph.D., Director of the Malaria research Unit at the IMM. “Our current studies advance the potential for new therapies as we have discovered an important molecular link between the earliest stages of infection and a critical host gene.”

The published report by Rodrigues, Hannus and Prudêncio et al. (Cell Host & Microbe 4, 271-282; 2008) describes the results of studies to investigate a decade-old hypothesis that lipoprotein clearance pathways in the human host may somehow impact the infection of liver cells by malaria-causing Plasmodium parasites. In the study, the liver-expressed gene, SR-BI, was identified as a critical host factor for the liver infection stage of malaria using a systematic RNAi screen of known lipoprotein pathway components in a cultured human cell-based infection assay.

These finding were then confirmed in animal models of malaria infection using small interfering RNAs (siRNAs), the molecules that mediate RNAi, specific for SR-BI silencing. SR-BI is well-known as the major liver receptor for high density lipoproteins (HDL), where it plays a key role in the transfer of cholesterol from the bloodstream to hepatocytes. In addition to studies using RNAi-mediated gene silencing, the pathophysiological relevance of SR-BI’s requirement for malaria infection was confirmed by a comprehensive series of experiments using synthetic small molecule inhibitor compounds, blocking monoclonal antibodies, SR-BI over-expression with transgenic mice, and SR-BI loss of function with knock-out mice. As such, this study establishes the first clear molecular link between malaria infection and cholesterol uptake pathways, thus describing a new therapeutic strategy in the fight against this devastating parasitic disease.

“All of these studies not only demonstrate the power of our RNAi-based discovery platform, but most importantly, they open brand new interventional routes for developing novel treatments for malaria and other major parasitic diseases now devastating some of the world’s most vulnerable populations,” said Dr. Christophe Echeverri, CEO/CSO of Cenix. “The various SR-BI-inhibitor molecules demonstrated in this study as having anti-malarial activity, including siRNAs, small synthetic molecules, and antibodies, all represent interesting candidates for the development of novel prophylactic options. Importantly, their equally novel host factor-based mechanism of action promises an inherently more powerful interventional strategy against the emergence of resistant strains of malarial parasites, as compared to existing parasite-targeted therapies.”

“We’re very pleased to participate in the research efforts initiated at the IMM with Cenix,” said Victor Kotelianski, Senior Vice-President and Distinguished Alnylam Fellow. “We feel particularly gratified that our core technology for systemic therapeutic gene silencing with RNAi therapeutics has played an important role in advancing the characterization of novel targets to confront this killer disease, and we look forward to further supporting ongoing efforts to tackle malaria and other major threats to global health.”

The current work results from an ongoing malaria research program started by the IMM group and their longstanding collaboration with Cenix, announced in 2005 to apply high-throughput RNAi technologies for discovery of host factor genes involved in malaria infection. This work was extended to include Alnylam’s technologies for in vivo delivery of siRNAs. Together, the collaborators have established a major new platform to drive the systematic, genomics-driven discovery and validation of novel human host genes offering clear therapeutic or prophylactic potential for halting malaria infection at its earliest liver stage, before onset of the disease’s symptomatic blood stage.

Driven by Dr. Mota’s ongoing malaria research and the efforts at Cenix and Alnylam, the partners are also seeking opportunities to further scale-up the use of this platform to extend the present screen over the rest of the human genome, and to broaden the reach of these capabilities beyond malaria, tackling other parasitic diseases of major relevance to global health, including so-called neglected diseases of the developing world.

Marta Agostinho | alfa
Further information:
http://www.fm.ul.pt

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>