Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to color a lizard: From biology to mathematics

13.04.2017

From the clown fish to leopards, skin colour patterns in animals arise from microscopic interactions among coloured cells that obey equations discovered by the mathematician Alan Turing. Today, researchers at the University of Geneva (UNIGE), Switzerland, and SIB Swiss Institute of Bioinformatics report in the journal Nature that a southwestern European lizard slowly acquires its intricate adult skin colour by changing the colour of individual skin scales using an esoteric computational system invented in 1948 by another mathematician: John von Neumann. The Swiss team shows that the 3D geometry of the lizard's skin scales causes the Turing mechanism to transform into the von Neumann computing system, allowing biology-driven research to link, for the first time, the work of these two mathematical giants.

A multidisciplinary team of biologists, physicists and computer scientists lead by Michel Milinkovitch, professor at the Department of Genetics and Evolution of the UNIGE Faculty of Science, Switzerland and Group Leader at the SIB Swiss Institute of Bioinformatics, realised that the brown juvenile ocellated lizard (Timon lepidus) gradually transforms its skin colour as it ages to reach an intricate adult labyrinthine pattern where each scale is either green or black.


The skin color pattern of this southwestern European lizard changes scale by scale.

Credit: ©UNIGE

This observation is at odd with the mechanism, discovered in 1952 by the mathematician Alan Turing, that involves microscopic interactions among coloured cells. To understand why the pattern is forming at the level of scales, rather than at the level of biological cells, two PhD students, Liana Manukyan and Sophie Montandon, followed individual lizards during 4 years of their development from hatchlings crawling out of the egg to fully mature animals. For multiple time points, they reconstructed the geometry and colour of the network of scales by using a very high resolution robotic system developed previously in the Milinkovitch laboratory.

Flipping from green to black

The researchers were then surprised to see the brown juvenile scales change to green or black, then continue flipping colour (between green and black) during the life of the animal. This very strange observation prompted Milinkovitch to suggest that the skin scale network forms a so-called 'cellular automaton'.

This esoteric computing system was invented in 1948 by the mathematician John von Neumann. Cellular automata are lattices of elements in which each element changes its state (here, its colour, green or black) depending on the states of neighbouring elements. The elements are called cells but are not meant to represent biological cells; in the case of the lizards, they correspond to individual skin scales.

These abstract automata were extensively used to model natural phenomena, but the UNIGE team discovered what seems to be the first case of a genuine 2D automaton appearing in a living organism. Analyses of the four years of colour change allowed the Swiss researchers to confirm Milinkovitch's hypothesis: the scales were indeed flipping colour depending of the colours of their neighbour scales.

Computer simulations implementing the discovered mathematical rule generated colour patterns that could not be distinguished from the patterns of real lizards.

How could the interactions among pigment cells, described by Turing equations, generate a von Neumann automaton exactly superposed to the skin scales? The skin of a lizard is not flat: it is very thin between scales and much thicker at the center of them. Given that Turing's mechanism involves movements of cells, or the diffusion of signals produced by cells, Milinkovitch understood that this variation of skin thickness could impact on the Turing's mechanism.

The researchers then performed computer simulations including skin thickness and saw a cellular automaton behaviour emerge, demonstrating that a Cellular Automaton as a computational system is not just an abstract concept developed by John von Neumann, but also corresponds to a natural process generated by biological evolution.

The need for a formal mathematical analysis

However, the automaton behaviour was imperfect as the mathematics behind Turing's mechanism and von Neumann automaton are very different. Milinkovitch called in the mathematician Stanislav Smirnov, Professor at the UNIGE, who was awarded the Fields Medal in 2010. Before long, Smirnov derived a so-called discretisation of Turing's equations that would constitute a formal link with von Neumann's automaton. Anamarija Fofonjka, a third PhD student in Milinkovitch's team implemented Smirnov new equations in computer simulations, obtaining a system that had become un-differentiable from a von Neumann automaton. The highly multidisciplinary team of researchers had closed the loop in this amazing journey, from biology to physics to mathematics ... and back to biology.

Media Contact

Michel Milinkovitch
michel.milinkovitch@unige.ch
41-223-793-338

 @UNIGEnews

http://www.unige.ch 

Michel Milinkovitch | EurekAlert!

Further reports about: UNIGE biological cells computer simulations juvenile lizard skin

More articles from Interdisciplinary Research:

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>