Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly Endowed Research Project for Developing an Artificial Sphincter

18.04.2013
The lack of control over one’s own bowel movements can severely affect an individual’s quality of life.

Researchers at the University of Basel want to develop an adaptive implant that would be able to contract and relax like a natural muscle. The national research initiative Nano-Tera.ch will provide CHF 2.2 million to support the interdisciplinary research and development of the implant.

Incontinence is a double burden for those afflicted: the psychological strain is high, and many are reticent to speak about it. Although mild cases can be treated with medication, in severe cases doctors must attempt to repair the sphincter or implant an artificial one.

The hydraulic sphincter implants that are currently available have major disadvantages. They exert significant and above all permanent pressure on the tissue, which can lead to damage of the anus. Further, they are often complicated to use, especially for older patients.

Given these problems, researchers led by Professor Bert Müller of the University of Basel’s Biomaterials Science Center, in cooperation with associated partners, would like to develop an implant that would contract and relax like a natural muscle. Müller explains, “An intelligent sphincter would automatically increase the pressure when the patient coughs.”

The researchers rely on ten thousand nanometer-thin plastic films that become warped when exposed to a voltage. The technology already exists in principle, but miniaturization is needed to apply them in battery operated implants that can last for several years.

BROAD CONSORTIUM OF RESEARCH AND INDUSTRY

The components of the implant that convert electric signals into mechanical motion are to be designed and built based on electroactive polymers at the University of Basel. The necessary performance electronics will be developed by the Swiss Federal Laboratories for Materials Science and Technology (EMPA, Eidgenössische Materialprüfungs- und Forschungsanstalt). Clinicians from Bern and Schaffhausen will specify the required standards for the implant, and the University of Bern will conduct the testing.

The project will be led by Professor Müller, who is the Thomas Straumann Professor of Materials Science in Medicine at the University of Basel. Other partners include the Medical Faculty of the University of Bern, Inselspital Bern, EMPA, and the hospitals of Schaffhausen. Together with their own funding of CHF 4.1 million the budget includes CHF 6.3 million for four years. Myopowers SA, which already has experience with artificial sphincters for the treatment of urinary incontinence, has provided support in-kind.

NANO-TERA.CH: HEALTH, HUMAN SECURITY, AND ENVIRONMENT IN FOCUS

The national research initiative Nano-tera.ch would like to expand the frontiers of engineering and information technology while also retaining a focus on health, human security, and the environment. Nano-tera.ch is supported by the Swiss National Funds and the Swiss University Conference. In 2011 and 2012, the initiative awarded over CHF 90 million to eighteen projects, of which CHF 42 million came from Nano-tera.ch and CHF 51 million came from project partners.

FURTHER INFORMATION

Prof. Dr. Bert Müller, Thomas Straumann Professor of Materials Science in Medicine, Biomaterials Science Center of the University of Basel, Tel. +41 61 265 96 60, E-mail: bert.mueller@unibas.ch
Weitere Informationen:
http://ow.ly/kb4OX

Anne Zimmermann | Universität Basel
Further information:
http://www.unibas.ch

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>