Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly Endowed Research Project for Developing an Artificial Sphincter

18.04.2013
The lack of control over one’s own bowel movements can severely affect an individual’s quality of life.

Researchers at the University of Basel want to develop an adaptive implant that would be able to contract and relax like a natural muscle. The national research initiative Nano-Tera.ch will provide CHF 2.2 million to support the interdisciplinary research and development of the implant.

Incontinence is a double burden for those afflicted: the psychological strain is high, and many are reticent to speak about it. Although mild cases can be treated with medication, in severe cases doctors must attempt to repair the sphincter or implant an artificial one.

The hydraulic sphincter implants that are currently available have major disadvantages. They exert significant and above all permanent pressure on the tissue, which can lead to damage of the anus. Further, they are often complicated to use, especially for older patients.

Given these problems, researchers led by Professor Bert Müller of the University of Basel’s Biomaterials Science Center, in cooperation with associated partners, would like to develop an implant that would contract and relax like a natural muscle. Müller explains, “An intelligent sphincter would automatically increase the pressure when the patient coughs.”

The researchers rely on ten thousand nanometer-thin plastic films that become warped when exposed to a voltage. The technology already exists in principle, but miniaturization is needed to apply them in battery operated implants that can last for several years.

BROAD CONSORTIUM OF RESEARCH AND INDUSTRY

The components of the implant that convert electric signals into mechanical motion are to be designed and built based on electroactive polymers at the University of Basel. The necessary performance electronics will be developed by the Swiss Federal Laboratories for Materials Science and Technology (EMPA, Eidgenössische Materialprüfungs- und Forschungsanstalt). Clinicians from Bern and Schaffhausen will specify the required standards for the implant, and the University of Bern will conduct the testing.

The project will be led by Professor Müller, who is the Thomas Straumann Professor of Materials Science in Medicine at the University of Basel. Other partners include the Medical Faculty of the University of Bern, Inselspital Bern, EMPA, and the hospitals of Schaffhausen. Together with their own funding of CHF 4.1 million the budget includes CHF 6.3 million for four years. Myopowers SA, which already has experience with artificial sphincters for the treatment of urinary incontinence, has provided support in-kind.

NANO-TERA.CH: HEALTH, HUMAN SECURITY, AND ENVIRONMENT IN FOCUS

The national research initiative Nano-tera.ch would like to expand the frontiers of engineering and information technology while also retaining a focus on health, human security, and the environment. Nano-tera.ch is supported by the Swiss National Funds and the Swiss University Conference. In 2011 and 2012, the initiative awarded over CHF 90 million to eighteen projects, of which CHF 42 million came from Nano-tera.ch and CHF 51 million came from project partners.

FURTHER INFORMATION

Prof. Dr. Bert Müller, Thomas Straumann Professor of Materials Science in Medicine, Biomaterials Science Center of the University of Basel, Tel. +41 61 265 96 60, E-mail: bert.mueller@unibas.ch
Weitere Informationen:
http://ow.ly/kb4OX

Anne Zimmermann | Universität Basel
Further information:
http://www.unibas.ch

More articles from Interdisciplinary Research:

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>