Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gymnastics for Robots

A current research project of the Austrian Science Fund FWF focuses on the motion safety and efficiency of robots.

The objective of the research is to improve the control of robot movements with the help of new mathematical approaches. For this purpose, the primary focus lies on the identification of situations in which a collision may occur and the planning of an optimal motion path. Crucial factors for the initiation of this project were new developments in the areas of motion planning, computer-aided design and algebraic geometry. Within the framework of this project, algebraic methods for the control of robot motions are being used for the first time in combination with numeric and geometric methods.

Not a Halloween decoration but a graphic representation of an algebraic equation that allows the calculation of spaces in which a robot cannot be controlled due to geometric reasons. © Josef Schadlbauer und Manfred Husty

A robot is born, so to speak, with motor skills. By way of program codes, motor skills are deposited into its microprocessor-based memory device. This is how motion patterns are defined, but they are not always safe for the environment - or for the robot itself. They also do not always live up to the users´ expectations regarding the efficiency of the robot´s performance. These limitations partly result from the mathematical approaches that are chosen for the calculation of the motion patterns. It is now the aim of a research group led by Prof. Manfred Husty and Prof. Hans-Peter Schröcker at the Faculty of Civil Engineering of the University of Innsbruck to develop new approaches for more safety and efficiency.

Within the framework of this project, which is supported by the Austrian Science Fund FWF, "robots" take on a quite general meaning. Be it an industrial robot or R2D2 - they all must first and foremost perform safely. "Safe means that a robot does not collide with its environment or with itself while performing its tasks. It also has to avoid what we call dangerous areas. This does not, however, involve physically present obstacles, but positions in the proximity of which the robot cannot be controlled due to geometric reasons, and thus may become dangerous. In robotics, we also call these areas singularity," explains project leader Prof. Schröcker.

Naturally, there are a number of methods available for calculating such areas and for avoiding them when programming motion patterns. However, according to Prof. Schröcker, all of these methods have one thing in common: "The methods that have been applied thus far are based on numeric calculations. These are not accurate. They also don´t allow a guarantee that all dangerous areas have been considered in the calculations. Algebraic methods, however, are not only more accurate, but could also allow such a guarantee."

Roughly speaking, numerics deal with solving continuous mathematical problems by means of discretised computer calculations. Algebra, however, uses variables, which allows for more accurate and more comprehensive calculations. In recent years, algebraic methods have in fact become increasingly popular in Mechanical Sciences. And the first theoretical results for their application in the area of robot motion are also available. These have, however, not yet been adapted to the practical requirements of mechanical engineering. This is exactly what is being done in this current project.

Developing new mathematical methods aims at ensuring not only that robots optimally avoid "dangerous" areas, but also that they carry out motion sequences as efficiently as possible; in this context, efficiency can mean "using the shortest route" or "quickly", "elegantly" and "in an energy-saving manner". When calculating the necessary paths, possible collisions and "dangerous" areas must be considered, as Prof. Schröcker explains: "The calculations can be thought of as connecting points in space by means of smooth curves which remain sufficiently far away from the areas that are to be avoided. Developing adequate methods for doing so is an essential objective of this FWF project that will combine fundamental mathematics and practical use."
Scientific contact:
Prof. Hans-Peter Schröcker
University of Innsbruck
Technikerstraße 13
6020 Innsbruck
T +43 / (0)512 / 507 - 6835
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna
T +43 / (0)1 / 505 67 40 - 8111
Copy Editing & Distribution:
PR&D - Public Relations for Research & Education Mariannengasse 8
1090 Vienna
T +43 / (0)1 / 505 70 44

Dr. Katharina Schnell | PR&D
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>