Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Look to the Birds for the Future of Unmanned Aerial Vehicles

01.06.2011
Engineers at UC San Diego are mimicking the movement of bird wings to help improve the maneuverability of unmanned aerial vehicles (UAVs).

UAVs are often used for surveillance of a fixed target in military and civilian applications. In order to observe a stationary target, a fixed wing UAV must remain airborne over the object, thus expending energy for propulsion and reducing operational time.

In addition, the aircraft may need to loiter at significant altitudes to avoid detection, and thus require complex sensors to observe the target far below. Rotary wing aircraft may be able to land on a perch for surveillance, but are generally less efficient for cruising flight than a fixed wing solution.

A fixed wing aircraft capable of spot landing on a perch (top of a pole, building, fence, etc.) would be an ideal solution capable of efficient cruising and versatile landing for longer surveillance missions. Because the target is nearby, simple sensors could be used onboard the perched aircraft. The problem of perching has already been solved by nature. Birds routinely land on small surfaces, using wing morphing and flapping techniques.

The UC San Diego engineers, led by mechanical and aerospace engineering professor Tom Bewley and graduate student Kim Wright, analyzed in slow motion several videos of birds landing to generate a working hypotheses for how wing morphing and flapping can be used for spot landing. “One of the key behaviors observed in the birds was their use of wing sweep for pitch control in both forward flight and stalled landing approaches,” she said.

“Birds can move their wings in a myriad of ways, providing a level of aerodynamic control that is unmatched by UAVs,” Wright said. To verify their hypotheses, Wright and her team built a small remote controlled UAV with variable wing sweep and tested it using computer modeling, and an onboard microcontroller as a flight data recorder.

Their initial testing validated the concept of using wing sweep for pitch control of the aircraft. The biologically-inspired aircraft design is similar in scale to the birds the engineers observed (barn owl, hawks, large parrots, crows) and has similar wing loading and airfoil characteristics. The fuselage and tail surfaces of the prototype UAV were primarily constructed from balsa wood and foam using standard hobby aircraft construction techniques.

The wings were formed using composite construction utilizing carbon fiber, fiberglass, high density foam, and rip stop nylon. Carbon fiber tubing was used for the shoulder joint structure, and fiberglass reinforcement was used in heavily stressed areas on the fuselage. Future research could address combining wing twist, flapping, or other wing morphing aspects of the perching problem that UAVs currently have. Being able to perch UAVs autonomously on features in the environment (tree tops, buildings, telephone poles, etc...), and then to take off again as required, is an immensely valuable and significantly increases mission duration.

“Combining these aspects into a fully actuated, intelligent UAV would be the ultimate goal,’ said Wright, who nabbed first place for this research under a poster titled “Investigating the use of wing sweep for pitch control of a small unmanned air vehicle,” during the Jacobs School’s Research Expo 2011. “A small UAV that could maneuver and land like a bird would be a valuable tool for surveillance and search and rescue. This project has brought the aerospace community a small step closer to that goal.”

Wright said the future of UAVs is diverse. UAVs are quickly becoming popular tools for the armed forces, but there are also a myriad of civilian applications, which are rapidly developing, such as wildfire monitoring, search and rescue, and traffic observation. “The technology is out there, and once federal aviation regulations are able to safely accommodate UAVs, I believe we will start seeing a lot more of them,” she said. Bewley added that sensor-equipped UAVs play an important emerging role for the tracking and accurate forecasting of the movement of large environmental plumes, such as the ash plume from the volcano in iceland and the radioactive plume from the nuclear accident in Japan. “There are several important scientific problems that need to be worked on to advance our capability to respond to such events,” Bewley said. “Two of the key underlying computational algorithms, state estimation (that is, synchronizing a large computer simulation of the environmental plume with the measurements taken in the recent past) and adaptive observation (that is, optimizing the trajectories of the sensor-equipped UAVs in the near future in order to minimize forecast uncertainty) are under intense scrutiny by our lab.

Initial experimental testing of these algorithms were performed by our lab in a parking lot at UC San Diego last summer, initially using small surface vehicles probing a heavy plume that hugged the ground. Doing analogous tests in airborne plumes that do not hug the ground requires UAVs that can loiter for long periods of time.”

Andrea Siedsma | Newswise Science News
Further information:
http://www.ucsd.edu

Further reports about: Aerial UAV Vehicle mimicking the movement unmanned aerial vehicles

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>