Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Look to the Birds for the Future of Unmanned Aerial Vehicles

01.06.2011
Engineers at UC San Diego are mimicking the movement of bird wings to help improve the maneuverability of unmanned aerial vehicles (UAVs).

UAVs are often used for surveillance of a fixed target in military and civilian applications. In order to observe a stationary target, a fixed wing UAV must remain airborne over the object, thus expending energy for propulsion and reducing operational time.

In addition, the aircraft may need to loiter at significant altitudes to avoid detection, and thus require complex sensors to observe the target far below. Rotary wing aircraft may be able to land on a perch for surveillance, but are generally less efficient for cruising flight than a fixed wing solution.

A fixed wing aircraft capable of spot landing on a perch (top of a pole, building, fence, etc.) would be an ideal solution capable of efficient cruising and versatile landing for longer surveillance missions. Because the target is nearby, simple sensors could be used onboard the perched aircraft. The problem of perching has already been solved by nature. Birds routinely land on small surfaces, using wing morphing and flapping techniques.

The UC San Diego engineers, led by mechanical and aerospace engineering professor Tom Bewley and graduate student Kim Wright, analyzed in slow motion several videos of birds landing to generate a working hypotheses for how wing morphing and flapping can be used for spot landing. “One of the key behaviors observed in the birds was their use of wing sweep for pitch control in both forward flight and stalled landing approaches,” she said.

“Birds can move their wings in a myriad of ways, providing a level of aerodynamic control that is unmatched by UAVs,” Wright said. To verify their hypotheses, Wright and her team built a small remote controlled UAV with variable wing sweep and tested it using computer modeling, and an onboard microcontroller as a flight data recorder.

Their initial testing validated the concept of using wing sweep for pitch control of the aircraft. The biologically-inspired aircraft design is similar in scale to the birds the engineers observed (barn owl, hawks, large parrots, crows) and has similar wing loading and airfoil characteristics. The fuselage and tail surfaces of the prototype UAV were primarily constructed from balsa wood and foam using standard hobby aircraft construction techniques.

The wings were formed using composite construction utilizing carbon fiber, fiberglass, high density foam, and rip stop nylon. Carbon fiber tubing was used for the shoulder joint structure, and fiberglass reinforcement was used in heavily stressed areas on the fuselage. Future research could address combining wing twist, flapping, or other wing morphing aspects of the perching problem that UAVs currently have. Being able to perch UAVs autonomously on features in the environment (tree tops, buildings, telephone poles, etc...), and then to take off again as required, is an immensely valuable and significantly increases mission duration.

“Combining these aspects into a fully actuated, intelligent UAV would be the ultimate goal,’ said Wright, who nabbed first place for this research under a poster titled “Investigating the use of wing sweep for pitch control of a small unmanned air vehicle,” during the Jacobs School’s Research Expo 2011. “A small UAV that could maneuver and land like a bird would be a valuable tool for surveillance and search and rescue. This project has brought the aerospace community a small step closer to that goal.”

Wright said the future of UAVs is diverse. UAVs are quickly becoming popular tools for the armed forces, but there are also a myriad of civilian applications, which are rapidly developing, such as wildfire monitoring, search and rescue, and traffic observation. “The technology is out there, and once federal aviation regulations are able to safely accommodate UAVs, I believe we will start seeing a lot more of them,” she said. Bewley added that sensor-equipped UAVs play an important emerging role for the tracking and accurate forecasting of the movement of large environmental plumes, such as the ash plume from the volcano in iceland and the radioactive plume from the nuclear accident in Japan. “There are several important scientific problems that need to be worked on to advance our capability to respond to such events,” Bewley said. “Two of the key underlying computational algorithms, state estimation (that is, synchronizing a large computer simulation of the environmental plume with the measurements taken in the recent past) and adaptive observation (that is, optimizing the trajectories of the sensor-equipped UAVs in the near future in order to minimize forecast uncertainty) are under intense scrutiny by our lab.

Initial experimental testing of these algorithms were performed by our lab in a parking lot at UC San Diego last summer, initially using small surface vehicles probing a heavy plume that hugged the ground. Doing analogous tests in airborne plumes that do not hug the ground requires UAVs that can loiter for long periods of time.”

Andrea Siedsma | Newswise Science News
Further information:
http://www.ucsd.edu

Further reports about: Aerial UAV Vehicle mimicking the movement unmanned aerial vehicles

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>