Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering could give reconstructive surgery a facelift

13.07.2010
Facial reconstruction patients may soon have the option of custom-made bone replacements optimized for both form and function, thanks to researchers at the University of Illinois and the Ohio State University Medical Center.

Whether resulting from illness or injury, loss of facial bones poses problems for reconstructive surgeons beyond cosmetic implications: The patient's chewing, swallowing, speaking or even breathing abilities may be impaired.

"The mid-face is perhaps the most complicated part of the human skeleton," said Glaucio Paulino, the Donald Biggar Willett Professor of Engineering at U. of I. "What makes mid-face reconstruction more complicated is its unusual unique shape (bones are small and delicate) and functions, and its location in an area susceptible to high contamination with bacteria."

To fashion bone replacements, surgeons often will harvest bone from elsewhere in the patient's body – the shoulder blade or hip, for example – and manually fashion it into something resembling the missing skull portion. However, since other bones are very different from facial bones in structure, patients may still suffer impaired function or cosmetic distortion.

The interdisciplinary research team, whose research results will be published in the July 12 edition of the Proceedings of the National Academy of Sciences, applied an engineering design technique called topology optimization. The approach uses extensive 3-D modeling to design structures that need to support specific loads in a confined space, and is often used to engineer high-rise buildings, car parts and other structures.

"It tells you where to put material and where to create holes," said Paulino, a professor of civil and environmental engineering. "Essentially, the technique allows engineers to find the best solution that satisfies design requirements and constraints."

Facial reconstruction seemed a natural fit for the technique, Paulino said. "We looked at the clinical problem from a different perspective. Topology optimization offers an interdisciplinary framework to integrate concepts from medicine, biology, numerical methods, mechanics, and computations."

Topology optimization would create patient-specific, case-by-case designs for tissue-engineered bone replacements. First, the researchers construct a detailed 3-D computer model of the patient in question and specify a design domain based on the injury and missing bone parts. Then a series of algorithms creates a customized, optimized structure, accounting for variables including blood flow, sinus cavities, chewing forces and soft tissue support, among other considerations. The researchers can then model the process of inserting the replacement bone into the patient and how the patient would look.

"Ideally, it would allow the physician to explore surgical alternatives and to design patient-specific bone replacement. Each patient's bone replacement designs are tailored for their missing volume and functional requirements," Paulino said.

Now that they have demonstrated the concept successfully by modeling several different types of facial bone replacements, the researchers hope to work toward developing scaffolds for tissue engineering so that their designs could be translated to actual bones. They also hope to explore further surgical possibilities for their method.

"This technique has the potential to pave the way toward development of tissue engineering methods to create custom fabricated living bone replacements in optimum shapes and amounts," Paulino said. "The possibilities are immense and we feel that we are just in the beginning of the process."

Also on the U. of I. team is graduate student Tam Nguyen. The Ohio team, sponsored by the National Science Foundation, includes Alok Sutradhar, one of Paulino's former students, and Dr. Michael Miller at the Ohio State University Medical Center Division of Plastic Surgery.

Editor's note: To reach Glaucio Paulino, call 217-333-3817; e-mail paulino@illinois.edu

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Interdisciplinary Research:

nachricht Start of SPICE brings new ways to accelerate interdisciplinary spin research in the 21st century
22.04.2015 | Johannes Gutenberg-Universität Mainz

nachricht Gene leads to malformation of the urinary tract
13.03.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Automated counting of tumor cells in blood

04.05.2015 | Life Sciences

Economic and effective security design

04.05.2015 | Transportation and Logistics

Proteomics identifies DNA repair toolbox

04.05.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>