Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineer To Launch Bacteria Into Space Aboard the Final Mission of Space Shuttle Atlantis

29.06.2011
There will be some very interesting passengers on the final mission of the NASA Space Shuttle Atlantis scheduled to launch July 8, 2011: thousands of bacteria.

Cynthia Collins, assistant professor of chemical and biological engineering at Rensselaer, is leading a series of experiments called Micro-2A that will be aboard the shuttle during its scheduled 12-day mission.

The research seeks to understand how microgravity changes the way potentially dangerous bacteria grows. In particular, the research will examine how they form difficult-to-kill colonies called biofilms.

The research has important implications for protecting astronauts while they are in space in enclosed and difficult-to-clean spaces, such as the International Space Station, or during extended space missions deeper into our solar system. It also provides new information in the fight against ever-more virulent bacterial infections such as staph, food poisoning, sepsis, and pneumonia.

Partnering with Collins on the project are nanobiotechnology expert Jonathan Dordick, the Howard P. Isermann Professor of Chemical and Biological Engineering at Rensselaer and director of the Rensselaer Center for Biotechnology and Interdisciplinary Studies, and thin films expert Joel Plawsky, professor in the Department of Chemical and Biological Engineering. The NASA Ames Research Center is funding the experiment.

This is the second time that Collins’ research will be included on the shuttle. Her research on bacteria was also aboard the shuttle mission that launched May 14, 2010. Collins has been analyzing the results of this previous work and will use this new series of experiments to test some of the results she has seen.

“We are clearly seeing altered biofilm formation during space flight,” she said. “There are some clear differences between the amount of biofilm formed in normal gravity and microgravity. These differences also appear to be organism dependent, with different organisms responding very differently to the environment in space.”

The bacteria that Collins will include are Pseudomonas aeruginosa and Staphylococcus aureus. These bacteria are responsible for more hospital-acquired infections than any other, according to Collins. The Center for Disease Control places hospital-acquired infections such as those caused by these bacteria as the fourth leading cause of death in the United States.

Biofilms are complex, three-dimensional microbial communities. Most biofilms, including those found in the human body, are harmless. Some biofilms, however, have been shown to be associated with disease. Researchers like Collins are discovering that the bacteria within these colonies have very different properties, including increased resistance to antimicrobials, compared with bacteria not encased in a biofilm.

Collins and her team will send up 16 devices, called Group Activation Packs (GAPs) and each containing eight vials of bacteria, aboard the shuttle. The GAPs and other hardware used by the Collins and her team were developed by BioServe Space Technologies. While in orbit, astronauts will begin the experiment by manipulating the sealed GAPs and combining the bacteria with nutrients and a surface on which they can form biofilms. At the same time, Collins will perform the same actions with identical GAPs on Earth at the Kennedy Space Center in Florida. After the shuttle returns, her team will compare the resulting biofilms to see how the behavior of bacteria and development of biofilms in microgravity differs from the Earth-bound control group.

In addition, the research team will also test if a newly developed, antimicrobial surface — developed by Dordick at Rensselaer — can help slow the growth of methicillin resistant Staphylococcus aureus, or MRSA, on Earth and in microgravity. Actual MRSA, the bacteria responsible for antibiotic-resistant infections, will not be used for the safety of those on board. A different and safer strain of bacteria with similar properties will serve as a proxy. The new surface developed by Dordick utilizes an enzyme found in nature and kills 100 percent of MRSA within 20 minutes of contact.

The new technology marries carbon nanotubes with lysostaphin, a naturally occurring enzyme used by non-pathogenic strains of staph bacteria to defend against staph growth. The resulting nanotube-enzyme biomaterial can be mixed with any number of surface finishes. In tests, it was mixed with ordinary latex house paint. More information on the surface can be found at: http://news.rpi.edu/update.do?artcenterkey=2759.

Astronauts have been shown to have an increased susceptibility to infection while in microgravity, making a deeper understanding of how these bacteria behave in space of particular importance, according to Collins. In addition to its importance in planning future space missions, the research also has important applications here on Earth. The conditions in space are similar to those produced within the human body on several levels. Understanding how bacteria thrive in space may also provide insight into how they develop once they enter the human body.

For additional information on Collins’ research, go to www.rpi.edu/~collic3/Cynthia_Collins. More information on Collins previous shuttle experiment can be found at http://news.rpi.edu/update.do?artcenterkey=2723

Gabrielle DeMarco | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>