Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Disney, CMU researchers build face models that give animators intuitive control of expressions

Data-driven approach subdivides model into independently trained regions

Flashing a wink and a smirk might be second nature for some people, but computer animators can be hard-pressed to depict such an expression realistically. Now scientists at Disney Research, Pittsburgh, and Carnegie Mellon University's Robotics Institute have created computerized models derived from actors' faces that reflect a full range of natural expressions while also giving animators the ability to manipulate facial poses.

The researchers developed a method that not only translates the motions of actors into a three-dimensional face model, but also sub-divides it into facial regions that enable animators to intuitively create the poses they need. The work, to be presented Aug. 10 at SIGGRAPH 2011, the International Conference on Computer Graphics and Interactive Techniques in Vancouver, envisions creation of a facial model that could be used to rapidly animate any number of characters for films, video games or exhibits.

"We can build a model that is driven by data, but can still be controlled in a local manner," said J. Rafael Tena, a Disney research scientist, who developed the interactive face models based on principal component analysis (PCA) with Iain Matthews, senior research scientist at Disney, and Fernando De la Torre, associate research professor of robotics at Carnegie Mellon.

Previous data-driven approaches have resulted in models that capture motion across the face as a whole. Tena said these are of limited use for animators because attempts to alter one part of an expression — a cocked eye, for instance — can cause unwanted motions across the entire face. Attempts to simply divide these holistic models into pieces are less effective because the resulting model isn't tailored to the motion of each piece.

As a result, Tena said, most facial animation still depends on "blendshape" models — a set of facial poses sculpted by artists based on static images. Given the wide range of human expressions, it can be difficult to predict all of the facial poses required in a film or videogame, however. Many additional poses often must be created during the course of production.

By contrast, Tena, De la Torre and Matthews created their models by recording facial motion capture data from a professional actor as he performed sentences with emotional content, localized actions and random motions. To cover the whole face, 320 markers were applied to enable the camera to capture facial motions during the performances.

The data from the actor was then analyzed using a mathematical method that divided the face into regions, based in part on distances between points and in part on correlations between points that tend to move in concert with each other. These regional sub-models are independently trained, but share boundaries. In this study, the result was a model with 13 distinct regions, but Tena said more regions would be possible by using performance capture techniques that can provide a dense reconstruction of the face, rather than the sparse samples produced by traditional motion capture equipment.

Future work will include developing models based on higher-resolution motion data and developing an interface that can be readily used by computer animators.

About Carnegie Mellon University: Carnegie Mellon ( is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>