Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disney, CMU researchers build face models that give animators intuitive control of expressions

10.08.2011
Data-driven approach subdivides model into independently trained regions

Flashing a wink and a smirk might be second nature for some people, but computer animators can be hard-pressed to depict such an expression realistically. Now scientists at Disney Research, Pittsburgh, and Carnegie Mellon University's Robotics Institute have created computerized models derived from actors' faces that reflect a full range of natural expressions while also giving animators the ability to manipulate facial poses.

The researchers developed a method that not only translates the motions of actors into a three-dimensional face model, but also sub-divides it into facial regions that enable animators to intuitively create the poses they need. The work, to be presented Aug. 10 at SIGGRAPH 2011, the International Conference on Computer Graphics and Interactive Techniques in Vancouver, envisions creation of a facial model that could be used to rapidly animate any number of characters for films, video games or exhibits.

"We can build a model that is driven by data, but can still be controlled in a local manner," said J. Rafael Tena, a Disney research scientist, who developed the interactive face models based on principal component analysis (PCA) with Iain Matthews, senior research scientist at Disney, and Fernando De la Torre, associate research professor of robotics at Carnegie Mellon.

Previous data-driven approaches have resulted in models that capture motion across the face as a whole. Tena said these are of limited use for animators because attempts to alter one part of an expression — a cocked eye, for instance — can cause unwanted motions across the entire face. Attempts to simply divide these holistic models into pieces are less effective because the resulting model isn't tailored to the motion of each piece.

As a result, Tena said, most facial animation still depends on "blendshape" models — a set of facial poses sculpted by artists based on static images. Given the wide range of human expressions, it can be difficult to predict all of the facial poses required in a film or videogame, however. Many additional poses often must be created during the course of production.

By contrast, Tena, De la Torre and Matthews created their models by recording facial motion capture data from a professional actor as he performed sentences with emotional content, localized actions and random motions. To cover the whole face, 320 markers were applied to enable the camera to capture facial motions during the performances.

The data from the actor was then analyzed using a mathematical method that divided the face into regions, based in part on distances between points and in part on correlations between points that tend to move in concert with each other. These regional sub-models are independently trained, but share boundaries. In this study, the result was a model with 13 distinct regions, but Tena said more regions would be possible by using performance capture techniques that can provide a dense reconstruction of the face, rather than the sparse samples produced by traditional motion capture equipment.

Future work will include developing models based on higher-resolution motion data and developing an interface that can be readily used by computer animators.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Interdisciplinary Research:

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

nachricht The Attraction Effect: how our Brains Can Be Influenced
30.01.2017 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>