Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Design of a compound that stabilizes the main natural suppressor of tumours

15.10.2008
An interdisciplinary team of researchers, headed by Ernest Giralt at the Institute for Research in Biomedicine (IRB Barcelona) and Javier de Mendoza at the “Institut Català d’Investigació Química” (ICIQ, Tarragona), have discovered a substance with the capacity to maintain protein p53 stable even when it presents certain mutations that promote the appearance of cancer.

Giralt, head of the Chemistry and Molecular Pharmacology programme and senior professor at the University of Barcelona, explains that, “tentatively, this could be the starting point to develop a new approach for anti-tumour treatments”. The study has been published today in the journal Proceedings of the National Academy of Sciences (PNAS) in an advanced edition.

Protein p53 is considered the most important tumour suppressor and it is at the centre of the machinery that regulates cell cycle arrest and the death of cells with damaged DNA. In its active form, p53 protein is a tetramer, that is to say it is formed by four identical copies of proteins bound together, which has four domains with differentiated functions: activation of transcription, DNA binding, tetramerization and regulation. The tetramerization domain is responsible for stabilizing the tetrameric structure.

More than 50% of cancer patients have mutations in the p53 gene. Although most of these are located in the DNA binding domain, several mutations are found in the tetramerization domain, thereby causing destabilization of the entire protein with the consequent loss of activity. Two well documented examples of this kind of congenital predisposition are pediatric adrenocortical carcinoma and Li-Fraumeni syndrome. Therefore, the design of compounds with the capacity to stabilize the tetramerization domain of p53 represents a new and attractive strategy for the development of anti-tumour drugs.

The article describes the design, synthesis and study of a compound with the capacity to interact with the p53 tetramerization domain. Javier de Mendoza, group leader at ICIQ and senior professor at the “Universidad Autónoma de Madrid”, explains, “it is a conical shaped molecule with four positive charges prepared to recognize and stabilize four negative charges of the protein”. To obtain results in the design and study of new molecules, it is necessary to have an in-depth knowledge of the language that proteins use to communicate with each other, to recognise each other and to bind to exert their function. From this perspective, more associated with basic science, Giralt emphasizes that “the study demonstrates the high level of maturity” that has been reached in the field of molecular recognition.

Drugs that act as tethers
The first author of the article, Susana Gordo, researcher with Giralt’s team, explains that “this work also opens up a new avenue for the design of drugs based on the use of small molecules that act as moulds or tethers to preserve the active form of proteins”. Among these possible applications of synthetic binding compounds, the researchers point out the stabilization of native forms of proteins or the recovery and rescue of mutated proteins. “The anti-tumoural factor p53, because of its fundamental role in the appearance of cancer, provides a magnificent opportunity for this kind of study”, concludes Giralt.

Through the combination of several techniques, including nuclear magnetic resonance, the researchers have been able to describe in detail the interaction of the new compound with the tetramerization domain. Furthermore, computer simulations and in vitro experiments have allowed the scientists to demonstrate the functionality of the complex.

The design and analysis of the compound has also involved the collaboration of the biologist Vera Martos, Javier de Mendoza’s team, and the researcher Margarita Menéndez at the “Consejo Superior de Investigaciones Científicas”. The computational chemistry part of the study was directed by Carles Bó at ICIQ, with the help of Eva Santos, from the same institute.

Sònia Armengou | alfa
Further information:
http://www.irbbarcelona.org

More articles from Interdisciplinary Research:

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>