Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer learns language by playing games

13.07.2011
By basing its strategies on the text of a manual, a computer infers the meanings of words without human supervision.

Computers are great at treating words as data: Word-processing programs let you rearrange and format text however you like, and search engines can quickly find a word anywhere on the Web. But what would it mean for a computer to actually understand the meaning of a sentence written in ordinary English — or French, or Urdu, or Mandarin?

One test might be whether the computer could analyze and follow a set of instructions for an unfamiliar task. And indeed, in the last few years, researchers at MIT’s Computer Science and Artificial Intelligence Lab have begun designing machine-learning systems that do exactly that, with surprisingly good results.

In 2009, at the annual meeting of the Association for Computational Linguistics (ACL), researchers in the lab of Regina Barzilay, associate professor of computer science and electrical engineering, took the best-paper award for a system that generated scripts for installing a piece of software on a Windows computer by reviewing instructions posted on Microsoft’s help site. At this year’s ACL meeting, Barzilay, her graduate student S. R. K. Branavan and David Silver of University College London applied a similar approach to a more complicated problem: learning to play “Civilization,” a computer game in which the player guides the development of a city into an empire across centuries of human history. When the researchers augmented a machine-learning system so that it could use a player’s manual to guide the development of a game-playing strategy, its rate of victory jumped from 46 percent to 79 percent.

Starting from scratch

“Games are used as a test bed for artificial-intelligence techniques simply because of their complexity,” says Branavan, who was first author on both ACL papers. “Every action that you take in the game doesn’t have a predetermined outcome, because the game or the opponent can randomly react to what you do. So you need a technique that can handle very complex scenarios that react in potentially random ways.”

Moreover, Barzilay says, game manuals have “very open text. They don’t tell you how to win. They just give you very general advice and suggestions, and you have to figure out a lot of other things on your own.” Relative to an application like the software-installing program, Branavan explains, games are “another step closer to the real world.”

The extraordinary thing about Barzilay and Branavan’s system is that it begins with virtually no prior knowledge about the task it’s intended to perform or the language in which the instructions are written. It has a list of actions it can take, like right-clicks or left-clicks, or moving the cursor; it has access to the information displayed on-screen; and it has some way of gauging its success, like whether the software has been installed or whether it wins the game. But it doesn’t know what actions correspond to what words in the instruction set, and it doesn’t know what the objects in the game world represent.

So initially, its behavior is almost totally random. But as it takes various actions, different words appear on screen, and it can look for instances of those words in the instruction set. It can also search the surrounding text for associated words, and develop hypotheses about what actions those words correspond to. Hypotheses that consistently lead to good results are given greater credence, while those that consistently lead to bad results are discarded.

Proof of concept

In the case of software installation, the system was able to reproduce 80 percent of the steps that a human reading the same instructions would execute. In the case of the computer game, it won 79 percent of the games it played, while a version that didn't rely on the written instructions won only 46 percent. The researchers also tested a more-sophisticated machine-learning algorithm that eschewed textual input but used additional techniques to improve its performance. Even that algorithm won only 62 percent of its games.

“If you’d asked me beforehand if I thought we could do this yet, I’d have said no,” says Eugene Charniak, University Professor of Computer Science at Brown University. “You are building something where you have very little information about the domain, but you get clues from the domain itself.”

Charniak points out that when the MIT researchers presented their work at the ACL meeting, some members of the audience argued that more sophisticated machine-learning systems would have performed better than the ones to which the researchers compared their system. But, Charniak adds, “it’s not completely clear to me that that’s really relevant. Who cares? The important point is that this was able to extract useful information from the manual, and that’s what we care about.”

Most computer games as complex as “Civilization” include algorithms that allow players to play against the computer, rather than against other people; the games’ programmers have to develop the strategies for the computer to follow and write the code that executes them. Barzilay and Branavan say that, in the near term, their system could make that job much easier, automatically creating algorithms that perform better than the hand-designed ones.

But the main purpose of the project, which was supported by the National Science Foundation, was to demonstrate that computer systems that learn the meanings of words through exploratory interaction with their environments are a promising subject for further research. And indeed, Barzilay and her students have begun to adapt their meaning-inferring algorithms to work with robotic systems.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Interdisciplinary Research:

nachricht Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs
07.11.2017 | Technische Universität München

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>