Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold cases heat up through Lawrence Livermore approach to identifying remains

11.10.2012
In an effort to identify the thousands of John/Jane Doe cold cases in the United States, a Lawrence Livermore National Laboratory researcher and a team of international collaborators have found a multidisciplinary approach to identifying the remains of missing persons.

Using "bomb pulse" radiocarbon analysis developed at Lawrence Livermore, combined with recently developed anthropological analysis and forensic DNA techniques, the researchers were able to identify the remains of a missing child 41 years after the discovery of the body.

In 1968, a child's cranium was recovered from the banks of a northern Canadian river. Initial analysis conducted by investigators, using technology at the time, concluded that the cranium came from the body of a 7-9-year-old child and no identity could be determined. The case went cold and was reopened later.

The cranium underwent reanalysis at the Centre for Forensic Research, Simon Fraser University in Canada, where skull measurements, skeletal ossification, and dental formation indicated an age-at-death of approximately 4 1/2; years old. At Lawrence Livermore, researchers conducted radiocarbon analysis of enamel from two teeth indicated a more precise birth date. Forensic DNA analysis, conducted at Simon Fraser University, indicated the child was a male, and the obtained mitochondrial profile matched a living maternal relative to the presumed missing child.

The multidisciplinary analyses resulted in a legal identification 41 years after the discovery of the remains, highlighting the enormous potential of combining radiocarbon analysis with anthropological and mitochondrial DNA analyses in producing confident personal identifications in forensic cold cases dating to within the last 60 years.

"There are thousands of John Doe and Jane Doe cold cases in the United States," said Livermore scientist Bruce Buchholz, who conducted the radiocarbon analysis in the case. "I believe we could provide birth dates and death dates for many of these cases."

Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, because the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches.

Using the Laboratory's Center for Accelerator Mass Spectrometry, Buchholz determined that the radioactive carbon-14 produced by above-ground nuclear testing in the 1950s and 1960s remains in the dental enamel, the hardest substance in the body. The radiocarbon analysis shows that dating teeth with the carbon-14 method estimates the birth date within one to two years.

Above-ground testing of nuclear weapons during the Cold War (1955-1963) caused a surge in global levels of carbon-14 (14C), which has been carefully recorded over time. The radiocarbon technique determines the amount of 14C in tooth enamel. Scientists can relate the extensive atmospheric record for 14C to when the tooth was formed and calculate the age of the tooth and its owner.

In forensic cases where teeth are unavailable, the radiocarbon analysis of bone also can provide useful information whether the time of death occurred prior to 1955 or afterward.

In the missing child case, Buchholz determined radiocarbon values for two teeth, which once analyzed showed that that the average of the crown's enamel formation span occurred between 1959 and 1961.

"In a conservative estimate, the carbon-14 value for the crown's enamel would correspond with a birth year between 1958 and 1962," Buchholz said.

In summary, the 14C dates in combination with the age-at-death estimate using anthropological techniques suggest that the child was born between 1958 and 1962 and died between 1963 and 1968.

The research also has implications for the identity of victims in mass graves or mass fatality contexts, where a combined DNA and radiocarbon analysis approach provides the additional benefit of distinguishing between maternal relations.

Besides Livermore and Simon Fraser University, other institutions participating in the research include the Karolinska Institute in Sweden and the British Columbia Institute of Technology.

The research appears in the September issue of the Journal of Forensic Sciences.

More Information

"Personal Identification of Cold Case Remains Through Combined Contribution from Anthopological, mtDNA, and Bomb-Pulse Dating Analysis," Journal of Forensic Sciences, September 2012.

"Fat turnover in obese slower than average," LLNL news release, Sept. 23, 2011

"Date for a Heart Cell," Science & Technology Review, April/May 2010

"New tooth enamel dating technique could help identify disaster victims," LLNL news release, Sept. 14, 2005

"Forensics: Age written in teeth by nuclear tests," Nature, Sept. 15, 2005.

Center for Accelerator Mass Spectrometry
Bruce Buchholz

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>