Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Center for Adaptive Robotics launched

22.11.2011
Robots should become “more intelligent” and more adaptable so that they can be of even greater assistance to humans. To achieve this aim, the University of Würzburg has founded the Interdisciplinary Research Center for Adaptive Robotics.

Whether in industrial manufacturing, tumor radiation therapy, or space travel, robots support humans in a variety of areas. Since 2009, scientists from the University of Würzburg have worked on enhancing corresponding applications in numerous projects during the run-up to the establishment of the Center for Adaptive Robotics. Usually this has been in collaboration with industrial partners so that the latest insights could be used directly for future products.


Robot arm installing a car seat weighing approximately 70 kilograms. Thanks to its help, workers are not burdened with either the weight of the seat or the complicated maneuvering procedure. Image: University of Würzburg/Computer Science VII


With the help of its sensors, the scooter can take its users safely to the destination entered, issuing reliable warnings of obstacles along the way. Photo: University of Würzburg/Computer Science VII

Robots assist older workers

With the “Fit4Work” project, for example, a technology for relieving the strain on older industrial workers was developed. These workers have considerable experience but their reaction times are slower and they are less able to carry heavy loads. For them, the robot technology is a “third hand” providing assistance. “An advanced sensor technology guarantees maximum safety despite the close physical proximity between robot and human,” says Professor Klaus Schilling, robotics expert from the University of Würzburg.

This development work was carried out as part of the “Fit4Age” project involving twelve research institutes and 32 industrial companies. Klaus Schilling was the assistant director, and the project was funded by the Bavarian Research Foundation. “We will have to handle more and more tasks like this in the future if we are to keep industrial jobs in Germany,” predicts Schilling. This is because the average age of industrial workers will continue to rise, he says: it was 41 in 2006; in 2018 it will be as high as 48.

Objectives of the Center for Adaptive Robotics

These impressive results with robotics and others like them have prompted the board of the University of Würzburg to give the green light for the permanent establishment of a Center for Adaptive Robotics. It will strive to develop innovative applications for medicine, industrial manufacturing, and space travel. “To achieve this, technical systems will have to be combined with approaches from the areas of sensor technology, control engineering, and IT,” says Schilling.

According to Schilling, complex tasks will continue to require interaction between man and machine. For this reason, intuitive, interactive man-machine interfaces will play an important role in the new robotics center.

Different disciplines will be involved

The main focus of the new center is on IT, which is why it is housed with the Faculty of Mathematics and Computer Science. However, it will also include biologists, neurologists, psychologists, and mathematicians in order to take basic research forward in an interdisciplinary fashion. In the area of application, there will be intensive cooperation with medicine, space travel, economics, and law. The intention behind this approach is to take a holistic look at the various aspects of robot deployment.

Homepage of the Center for Adaptive Robotics:
http://www.arc.informatik.uni-wuerzburg.de
Top telemedicine projects
Exciting projects have always come the way of Klaus Schilling’s Department of Robotics and Telematics. In the leading-edge cluster known as “Medical Valley”, which is being funded by the Federal Ministry of Education and Research to the tune of EUR 80 million in total, Würzburg scientists have been involved with two telemedicine projects since the start of 2010. They were chosen because of their innovative remote sensor data capturing methods.

The idea is for patients who need constant care to be able to continue to lead their normal lives at home. This can work if their vital functions are measured continuously and the information is forwarded to a medical center where it is checked by computers. If there are any changes, the doctor is notified immediately – he can then react early and intervene quickly in an emergency.

This system is currently being realized for people with chronic obstructive pulmonary disease (COPD) and dialysis patients. Würzburg’s robotics department is collaborating on these projects run by the Center for Telematics (Gerbrunn) with the companies ERT (Höchberg), iWelt (Eibelstadt), and Fresenius Medical Care (Schweinfurt) as well as with Würzburg University Hospital, Erlangen Dialysis Center, and Missionsärztliche Klinik GmbH (Würzburg).

Other robotics projects from Würzburg

Würzburg’s robotics department has already successfully completed a number of projects. At the Department of Radiotherapy, for example, a robot-controlled couch balances lung cancer patients in position so that the radiation always hits the tumor with precision. This works because the system records the respiratory movements of the chest and immediately aligns the couch so that the beams do not miss their target.

Another development is a miniaturized gastric tube, which can replace laborious gastroscopy examinations. It is smaller than a tablet, easy to swallow, and once inside supplies medical data to external readers. Patents in Europe and the USA have been applied for as a joint measure involving medicine and IT.

In the “Fit4Age” project, a scooter has been developed to assist elderly people with mobility. The wheelchair-style robotic vehicle has driving assistance functions that it can use to navigate autonomously and move around obstacles. An advisory board of 120 senior citizens was involved in the development.

And finally, Würzburg’s robotics department is also focusing on space. The scientists want to make satellites technically capable of detecting and capturing space debris and purposefully sending it on a trajectory that causes it to burn up in the earth’s atmosphere.

Contact

Prof. Dr. Klaus Schilling, Department of Computer Science VII: Robotics and Telematics, University of Würzburg,

T +49 (0)931 31-86647, schi@informatik.uni-wuerzburg.

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>