Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Center for Adaptive Robotics launched

Robots should become “more intelligent” and more adaptable so that they can be of even greater assistance to humans. To achieve this aim, the University of Würzburg has founded the Interdisciplinary Research Center for Adaptive Robotics.

Whether in industrial manufacturing, tumor radiation therapy, or space travel, robots support humans in a variety of areas. Since 2009, scientists from the University of Würzburg have worked on enhancing corresponding applications in numerous projects during the run-up to the establishment of the Center for Adaptive Robotics. Usually this has been in collaboration with industrial partners so that the latest insights could be used directly for future products.

Robot arm installing a car seat weighing approximately 70 kilograms. Thanks to its help, workers are not burdened with either the weight of the seat or the complicated maneuvering procedure. Image: University of Würzburg/Computer Science VII

With the help of its sensors, the scooter can take its users safely to the destination entered, issuing reliable warnings of obstacles along the way. Photo: University of Würzburg/Computer Science VII

Robots assist older workers

With the “Fit4Work” project, for example, a technology for relieving the strain on older industrial workers was developed. These workers have considerable experience but their reaction times are slower and they are less able to carry heavy loads. For them, the robot technology is a “third hand” providing assistance. “An advanced sensor technology guarantees maximum safety despite the close physical proximity between robot and human,” says Professor Klaus Schilling, robotics expert from the University of Würzburg.

This development work was carried out as part of the “Fit4Age” project involving twelve research institutes and 32 industrial companies. Klaus Schilling was the assistant director, and the project was funded by the Bavarian Research Foundation. “We will have to handle more and more tasks like this in the future if we are to keep industrial jobs in Germany,” predicts Schilling. This is because the average age of industrial workers will continue to rise, he says: it was 41 in 2006; in 2018 it will be as high as 48.

Objectives of the Center for Adaptive Robotics

These impressive results with robotics and others like them have prompted the board of the University of Würzburg to give the green light for the permanent establishment of a Center for Adaptive Robotics. It will strive to develop innovative applications for medicine, industrial manufacturing, and space travel. “To achieve this, technical systems will have to be combined with approaches from the areas of sensor technology, control engineering, and IT,” says Schilling.

According to Schilling, complex tasks will continue to require interaction between man and machine. For this reason, intuitive, interactive man-machine interfaces will play an important role in the new robotics center.

Different disciplines will be involved

The main focus of the new center is on IT, which is why it is housed with the Faculty of Mathematics and Computer Science. However, it will also include biologists, neurologists, psychologists, and mathematicians in order to take basic research forward in an interdisciplinary fashion. In the area of application, there will be intensive cooperation with medicine, space travel, economics, and law. The intention behind this approach is to take a holistic look at the various aspects of robot deployment.

Homepage of the Center for Adaptive Robotics:
Top telemedicine projects
Exciting projects have always come the way of Klaus Schilling’s Department of Robotics and Telematics. In the leading-edge cluster known as “Medical Valley”, which is being funded by the Federal Ministry of Education and Research to the tune of EUR 80 million in total, Würzburg scientists have been involved with two telemedicine projects since the start of 2010. They were chosen because of their innovative remote sensor data capturing methods.

The idea is for patients who need constant care to be able to continue to lead their normal lives at home. This can work if their vital functions are measured continuously and the information is forwarded to a medical center where it is checked by computers. If there are any changes, the doctor is notified immediately – he can then react early and intervene quickly in an emergency.

This system is currently being realized for people with chronic obstructive pulmonary disease (COPD) and dialysis patients. Würzburg’s robotics department is collaborating on these projects run by the Center for Telematics (Gerbrunn) with the companies ERT (Höchberg), iWelt (Eibelstadt), and Fresenius Medical Care (Schweinfurt) as well as with Würzburg University Hospital, Erlangen Dialysis Center, and Missionsärztliche Klinik GmbH (Würzburg).

Other robotics projects from Würzburg

Würzburg’s robotics department has already successfully completed a number of projects. At the Department of Radiotherapy, for example, a robot-controlled couch balances lung cancer patients in position so that the radiation always hits the tumor with precision. This works because the system records the respiratory movements of the chest and immediately aligns the couch so that the beams do not miss their target.

Another development is a miniaturized gastric tube, which can replace laborious gastroscopy examinations. It is smaller than a tablet, easy to swallow, and once inside supplies medical data to external readers. Patents in Europe and the USA have been applied for as a joint measure involving medicine and IT.

In the “Fit4Age” project, a scooter has been developed to assist elderly people with mobility. The wheelchair-style robotic vehicle has driving assistance functions that it can use to navigate autonomously and move around obstacles. An advisory board of 120 senior citizens was involved in the development.

And finally, Würzburg’s robotics department is also focusing on space. The scientists want to make satellites technically capable of detecting and capturing space debris and purposefully sending it on a trajectory that causes it to burn up in the earth’s atmosphere.


Prof. Dr. Klaus Schilling, Department of Computer Science VII: Robotics and Telematics, University of Würzburg,

T +49 (0)931 31-86647, schi@informatik.uni-wuerzburg.

Robert Emmerich | idw
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>