Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case Western Reserve University uncovers genetic basis for some birth defects

12.11.2008
Absence of ERK2 Gene linked to birth defects

A multidisciplinary research team at Case Western Reserve University led by Gary Landreth, Ph.D., a professor in the School of Medicine's Department of Neurosciences, has uncovered a common genetic pathway for a number of birth defects that affect the development of the heart and head. Abnormal development of the jaw, palate, brain and heart are relatively common congenital defects and frequently arise due to genetic errors that affect a key developmental pathway.

The research, titled "Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development" is published in the November 10 issue of the Proceedings of the National Academy of Sciences of the United States of America.

Landreth, also the senior author of the study, developed a mouse model of these disorders by removing a gene central to this developmental pathway, called ERK2. He, together with Dr. William Snider at the University of North Carolina, discovered that the mice missing the gene for ERK2 in neural crest cells had developmental defects resembling those of human patients with a deletion that includes this gene. The patients have features that are similar to DiGeorge syndrome, which is associated with cardiac and palate defects. Interestingly, the ERK2 gene is central to a well-known pathway already associated with a different distinct group of cardiac and craniofacial syndromes that include Noonan, Costello, Cardiofaciocutaneous syndrome, and LEOPARD syndrome.

Landreth enlisted the help of Michiko Watanabe, Ph.D., professor of Pediatrics at Case Western Reserve University School of Medicine to look at the mouse hearts. She and her team found that they had characteristic heart defects resembling those seen in the patients with ERK2 deletions.

"Given Dr. Watanabe's findings, we determined that we had in fact developed animal models that mimicked the human deletion syndrome," said Landreth. "This work sheds light on how these developmental errors occur."

Remarkably, Dr. Sulagna Saitta, a human geneticist at Children's Hospital of Philadelphia had identified children who had comparable heart defects as well as subtle facial differences. These children were all missing a very small region of chromosome 22 that contained the ERK2 gene.

Saitta agreed that the similarity in the anatomic structures affected in the mice and those in the patients who have lost one copy of this gene suggest that ERK2 and its pathway members are essential for normal development and might lead to these birth defects. These findings link together several distinct syndromes that are each characterized by cardiac and craniofacial abnormalities and show that they can result from perturbations of the ERK cascade.

Landreth and his team will take these findings back to the lab and find out exactly why cells need ERK2 during embryogenesis.

Funding was provided by the National Institutes of Health, the National Science Foundation, the National Heart Lung Blood Institue and a National Research Service Award.

To access the full study go to Proceedings of the National Academy of Sciences of the United States of America Web site: http://www.pnas.org/content/early/2008/10/23/0805239105.abstract?sid=15b66c02-fef5-4cc5-a1da-472459fa7f2c

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and 15th largest among the nation's medical schools for research funding from the National Institutes of Health. Eleven Nobel Laureates have been affiliated with the school.

The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching and in 2002, became the third medical school in history to receive a pre-eminent review from the national body responsible for accrediting the nation's academic medical institutions. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century.

Annually, the School of Medicine trains more than 600 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News and World Report Guide to Graduate Education. The School of Medicine's primary clinical affiliate is University Hospitals and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic Foundation, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Christina Thompson | EurekAlert!
Further information:
http://www.case.edu
http://casemed.case.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>