Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cable-driven parallel robots - Motion simulation in a new dimension

10.09.2015

Under the lead of the Tübingen-based Max Planck Institute for Biological Cybernetics (MPI), Fraunhofer IPA has co-developed a new cable-driven parallel robot that is the first one capable of transporting humans while at the same time setting new standards in terms of workspace, acceleration and payload for a motion simulator. The scientists have thus succeeded in decisively advancing a technology previously used for automation solutions in the field of intralogistics. On 16 September 2015, MPI will unveil the motion simulator to the public at the Driving Simulation Conference & Exhibition (DSC2015) in Tübingen.

To date, cable robots have been used in production environments, where they meet high requirements. The systems surpass conventional industrial robots in size and pay- load by between one and two orders of magnitude. The end effector can be freely moved with high accuracy by up to eight cables and winches. Based on this technology and in a world first, the idea of a cable-driven motion simulator has now been realized under the lead of Professor Heinrich Bülthoff from MPI for Biological Cybernetics.


The cabine design, here in minimal configuration, is modular and easily adjustable.

Source: Fraunhofer IPA, Photo: Philipp Miermeister

Technical innovations

In the cable-driven simulator, the motion of the simulator cabin is controlled by eight unsupported steel cables attached to winches. In contrast to conventional motion simulators, the use of cables makes it possible to reduce the moving mass and to scale the workspace to any required size. A total drive power of 348 kW allows the cabin to accelerate at 1.5 times gravitational acceleration along freely programmable paths inside a 5 x 8 x 5 m³ workspace.

In addition, the cables can be reattached in under an hour to enable the simulator to be adapted to different cabins and thus used for a range of scenarios. During the two-year collaboration between both Institutes, Philipp Miermeister, a member of Fraunhofer IPA’s Cable Robotics working group headed by Junior Professor Andreas Pott, has contributed much know-how to driving forward the design and realization of the simulator.

The scientists have not only implemented the control algorithms, but also developed a lightweight yet rugged carbon fibre cabin capable of withstanding the high dynamic loads during operation. Made entirely from carbon fibre tubes, the cabin frame maximizes the usable cabin volume with a diameter of 260 cm for projection surfaces and cockpit instrumentation. This allows it to be used for highquality video projections and realistic operator interfaces.

At the same time, the light 80 kg frame is capable of accelerating at high speed while also withstanding high forces, because, in operation, the cables pull on the outer structure with up to 1.5 tonnes. Its large workspace and dynamic capabilities make the simulator suitable for a wide spectrum of VR (virtual reality) applications, including driving/flight simulation as well as investigation of basic perception processes in humans.

“This simulator offers us entirely new possibilities for studying motion perception with possible applications in neurological research into balance disorders,” says Professor Bülthoff, who is a long-time perception researcher.

Successful collaboration

There is a history of collaboration between the Fraunhofer and Max Planck Institutes.
“With the cable-driven simulator, the scientists from both Institutes have once again demonstrated how the combination of basic research and industry-oriented technology development can lead to innovative products,” underlines Professor Thomas Bauernhansl, Institute Director at Fraunhofer IPA.

Maiden journey of the cable-driven simulator

During a welcoming reception at the Driving Simulation Conference & Exhibition (DSC2015), the scientists will unveil the cable robot to a wider audience. One of Europe’s leading conferences in the field of driving simulation, DSC is being held in Germany for the first time. Taking part alongside MPI are the Mercedes-Benz Sindelfingen plant of Daimler AG as well as the Research Institute of Automotive Engineering and Vehicle Engines (FKFS) from the University of Stuttgart. Coupled with an exhibition, the conference attracts experts from research and industry. Journalists are welcome to attend the reception at 7 p.m. on 16 September; those wishing to attend are requested to register: presse-kyb@tuebingen.mpg.de

Information in brief
Conference: Driving Simulation Conference & Exhibition (DSC2015)
When: 16 to 18 September 2015
Where: Tübinger Kupferbau
Organizer: Paolo Pretto, Max Planck Institute for Biological Cybernetics, in cooperation with Renault and France’s Grande École Arts et Métiers ParisTech
Press event: As part of DSC2015, a reception will be held at 7 p.m. on 16 September, at which the simulators of MPI for Biological Cybernetics will be available for viewing. If interested, please register giving your name, contact details and medium by email to: pressekyb@ tuebingen.mpg.de

Contact Partner
Philipp Miermeister | Phone +49 711 970-1114 | philipp.miermeister@ipa.fraunhofer.de | Fraunhofer Institute for Manufacturing Engineering and Automation IPA | www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Interdisciplinary Research:

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>