Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following the brain’s lead

07.11.2013
When designed to process sound based on familiar patterns, sound recognition by computers becomes more robust

Computers, machines and even smart phones can process sounds and audio signals with apparent ease, but they all require significant computing power.


A brain-based pattern-recognition process that searches for familiar features in the audio spectrum improves sound recognition in computers.
Copyright : 2013 A*STAR Institute for Infocomm Research

Researchers from the A*STAR Institute for Infocomm Research in Singapore have proposed a way to improve computer audio processing by applying lessons inspired from the way the brain processes sounds.

“The method proposed in our study may not only contribute to a better understanding of the mechanisms by which the biological acoustic systems operate, but also enhance both the effectiveness and efficiency of audio processing,” comments Huajin Tang, an electrical engineer from the research team.

When listening to someone speaking in a quiet room, it is easy to identify the speaker and understand their words. While the same words spoken in a loud bar are more difficult to process, our brain is still capable of distinguishing the voice of the speaker from the background noise. Computers, on the other hand, still have considerable problems identifying complex sounds from a noisy background; even smart phones must send audio signals to a powerful centralized server for processing.

Considerable computing power at the server is required because the computer continuously processes the entire spectrum of human audio frequencies. The brain, however, analyzes information more selectively: it processes audio patterns localized in time and frequency (see image). When someone speaks with a deep voice, for example, the brain dispenses with analyzing high-pitched sounds. So when a speaker in a loud bar stops talking, the brain stops trying to catch and process the sounds that form his words.

Tang and his team emulated the brain’s sound-recognition strategy by identifying key points in the audio spectrum of a sound. These points could be characteristic frequencies in a voice or repeating patterns, such as those of an alarm bell. They analyzed the signal in more detail around these key points only, looking for familiar audio frequencies as well as time patterns. This analysis enabled a robust extraction of matching signals when a noise was present. To improve the detection over time, the researchers fed matching frequency patterns into a neurological algorithm that mimics the way the brain learns through the repetition of known patterns.

In computer experiments, the algorithm successfully processed known target signals, even in the presence of noise. Expanding this approach, says Tang, “could lead to a greater understanding of the way the brain processes sound; and, beyond that, it could also include touch, vision and other senses.”

Journal information

Dennis, J., Yu, Q., Tang, H., Tran, H. D. & Li, H. Temporal coding of local spectrogram features for robust sound recognition. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 26–31 May 2013.

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>