Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boron nanoribbons reveal surprising thermal properties in bundles

21.12.2011
Size matters… but apparently so does shape – when it comes to conducting heat in very small spaces.

Researchers looking at the thermal conductivity of boron nanoribbons have found that they have unusual heat-transfer properties when compared to other wire/tube-like nanomaterials. While past experiments have shown that bundles of non-metallic nanostructures are less effective in conducting heat energy than single nanostructures, a new study shows that bundling boron nanoribbons can have the opposite effect and "the thermal conductivity of a bundle of boron nanoribbons can be significantly higher than that of a single free-standing nanoribbon," according to a report in Nature Nanotechnology, published online on December 11.

The finding is the result of work by a multidisciplinary team headed by Ravi Prasher of the Advanced Research Projects Agency, Terry Xu of the University of North Carolina at Charlotte, and Deyu Li of Vanderbilt University (see a complete list of authors below).

Additionally, the researchers found that the unusual heat-transfer properties of boron nanoribbon bundles can be modified, allowing the higher thermal conductivity to be switched on and off through relatively simple physical manipulation. The study concludes that the ribbon structure of the nanomaterials is strongly related to the unusual thermal conductivity of the bundles.

Boron-based nanostructures are a promising class of high temperature thermoelectric materials -- substances that can convert waste heat to useful electricity – and thermal conductivity is related to other thermoelectric properties. Physicists describe the transmission of heat energy in materials like boron as happening through the conduction of "phonons," quasi-wave-particles that carry energy through excitations of the material's atoms.

"What we found was largely unexpected," said Xu. "When two nanoribbons were put together, the thermal conductivity was found to rise significantly rather than staying the same or going down, as has been the case in previous measurements. It has been assumed that phonons were hampered by the interface between the individual nanostructures in similar materials.

"That seems to mean that the phonon can pass effectively through the interface between two boron nanoribbons," she said. "The question is whether or not this result is due to the weak van der Waals interactions between two nanostructures of ultra-flat geometry."

The team suspects that the reason for the enhanced thermal conductivity is due in large part to the flat surface structure of the nanoribbons, based on another experimental result that the group discovered by accident.

The nanoribbon bundles exhibiting the unexpectedly higher thermal conductivity were originally prepared in a solution of reagent alcohol and water, which was then allowed to evaporate, leaving some nanoribbons drawn together by van der Waals force (the weak attraction that non reactive and uncharged substances can have for each other). When other members of the team attempted to duplicate this result, however, the experiment failed and the bundles only had the lower thermal conductivity of single ribbons. The researchers then noted that a significant difference between the two attempts was that the second experiment had used isopropyl alcohol rather than reagent alcohol in the solution. Since isopropyl alcohol was known to leave minute residue following evaporation, the researchers suspected that a residue was forming on the ribbons surfaces – a fact that microscopy confirmed -- and the residue apparently prevented tight contact between two nanoribbons. Further tests were made on the lower-conducting bundles, where the ribbon interfaces were washed with reagent alcohol to remove the isopropyl residue, and in this experiment the higher thermal conductivity was achieved.

The results point to the conclusion that boron nanoribbons form better heat-conducting bundles because the ribbons flat surfaces allow for tighter, more complete contact between the individual structures through van der Waals interaction and improved transmission of phonons overall.

"The result implies that achieving a tight van der Waals interface between the ribbons is important in thermal conductivity, something their geometry encourages," Xu said. "It is possible that this result may have implications for other materials with ribbon-based nanostructures."

Xu notes that there are potential engineering applications for the finding come not just from the improved thermal conductivity of boron nanoribbon bundles, but also from the reversible nature of the effect.

"This may lead to a simple way to switch the thermal conductivity of the bundle on and off," she said. "If you want more heat dissipated, but only in certain conditions, you can apply a solution to create a bundle structure with tight bonds and higher thermal conductivity. It could similarly be reversed by adding a residue between the nanoribbons and reducing the thermal conductivity to that of an individual ribbon."

The finding appears in a letter to Nature Nanotechnology. The authors are Juekuan Yang, Yang Yang, Scott Waltermire and Deyu Li from Vanderbilt University; Xiaoxia Wu, Haitao Zhang, Timothy Gutu, Youfei Jiang, and Terry Xu from UNC Charlotte; Yunfei Chen from Southwest University in Nanjing, China; Alfred Zinn from Lockheed Martin Space Systems and Ravi Prasher from the Advanced Research Projects Agency in the US Department of Energy. This research was funded by the National Science Foundation and Lockheed Martin.

James Hathaway | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>