Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boron nanoribbons reveal surprising thermal properties in bundles

21.12.2011
Size matters… but apparently so does shape – when it comes to conducting heat in very small spaces.

Researchers looking at the thermal conductivity of boron nanoribbons have found that they have unusual heat-transfer properties when compared to other wire/tube-like nanomaterials. While past experiments have shown that bundles of non-metallic nanostructures are less effective in conducting heat energy than single nanostructures, a new study shows that bundling boron nanoribbons can have the opposite effect and "the thermal conductivity of a bundle of boron nanoribbons can be significantly higher than that of a single free-standing nanoribbon," according to a report in Nature Nanotechnology, published online on December 11.

The finding is the result of work by a multidisciplinary team headed by Ravi Prasher of the Advanced Research Projects Agency, Terry Xu of the University of North Carolina at Charlotte, and Deyu Li of Vanderbilt University (see a complete list of authors below).

Additionally, the researchers found that the unusual heat-transfer properties of boron nanoribbon bundles can be modified, allowing the higher thermal conductivity to be switched on and off through relatively simple physical manipulation. The study concludes that the ribbon structure of the nanomaterials is strongly related to the unusual thermal conductivity of the bundles.

Boron-based nanostructures are a promising class of high temperature thermoelectric materials -- substances that can convert waste heat to useful electricity – and thermal conductivity is related to other thermoelectric properties. Physicists describe the transmission of heat energy in materials like boron as happening through the conduction of "phonons," quasi-wave-particles that carry energy through excitations of the material's atoms.

"What we found was largely unexpected," said Xu. "When two nanoribbons were put together, the thermal conductivity was found to rise significantly rather than staying the same or going down, as has been the case in previous measurements. It has been assumed that phonons were hampered by the interface between the individual nanostructures in similar materials.

"That seems to mean that the phonon can pass effectively through the interface between two boron nanoribbons," she said. "The question is whether or not this result is due to the weak van der Waals interactions between two nanostructures of ultra-flat geometry."

The team suspects that the reason for the enhanced thermal conductivity is due in large part to the flat surface structure of the nanoribbons, based on another experimental result that the group discovered by accident.

The nanoribbon bundles exhibiting the unexpectedly higher thermal conductivity were originally prepared in a solution of reagent alcohol and water, which was then allowed to evaporate, leaving some nanoribbons drawn together by van der Waals force (the weak attraction that non reactive and uncharged substances can have for each other). When other members of the team attempted to duplicate this result, however, the experiment failed and the bundles only had the lower thermal conductivity of single ribbons. The researchers then noted that a significant difference between the two attempts was that the second experiment had used isopropyl alcohol rather than reagent alcohol in the solution. Since isopropyl alcohol was known to leave minute residue following evaporation, the researchers suspected that a residue was forming on the ribbons surfaces – a fact that microscopy confirmed -- and the residue apparently prevented tight contact between two nanoribbons. Further tests were made on the lower-conducting bundles, where the ribbon interfaces were washed with reagent alcohol to remove the isopropyl residue, and in this experiment the higher thermal conductivity was achieved.

The results point to the conclusion that boron nanoribbons form better heat-conducting bundles because the ribbons flat surfaces allow for tighter, more complete contact between the individual structures through van der Waals interaction and improved transmission of phonons overall.

"The result implies that achieving a tight van der Waals interface between the ribbons is important in thermal conductivity, something their geometry encourages," Xu said. "It is possible that this result may have implications for other materials with ribbon-based nanostructures."

Xu notes that there are potential engineering applications for the finding come not just from the improved thermal conductivity of boron nanoribbon bundles, but also from the reversible nature of the effect.

"This may lead to a simple way to switch the thermal conductivity of the bundle on and off," she said. "If you want more heat dissipated, but only in certain conditions, you can apply a solution to create a bundle structure with tight bonds and higher thermal conductivity. It could similarly be reversed by adding a residue between the nanoribbons and reducing the thermal conductivity to that of an individual ribbon."

The finding appears in a letter to Nature Nanotechnology. The authors are Juekuan Yang, Yang Yang, Scott Waltermire and Deyu Li from Vanderbilt University; Xiaoxia Wu, Haitao Zhang, Timothy Gutu, Youfei Jiang, and Terry Xu from UNC Charlotte; Yunfei Chen from Southwest University in Nanjing, China; Alfred Zinn from Lockheed Martin Space Systems and Ravi Prasher from the Advanced Research Projects Agency in the US Department of Energy. This research was funded by the National Science Foundation and Lockheed Martin.

James Hathaway | EurekAlert!
Further information:
http://www.uncc.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>