Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Auto-pilots need a birds-eye view

Pigeons can inform navigation technology design

New research on how birds can fly so quickly and accurately through dense forests may lead to new developments in robotics and auto-pilots.

Scientists from Harvard University trained pigeons to fly through an artificial forest with a tiny camera attached to their heads, literally giving a birds-eye view. "Attaching the camera to the bird as well as filming them from either side means we can reconstruct both what the bird sees and how it moves," says Dr. Huai-Ti Lin, a lead researcher for this work who has special insight into flying as he is a remote control airplane pilot himself.

The methods pigeons use to navigate through difficult environments could be used as a model for auto-pilot technology. Pigeons, with >300 degree panoramic vision, are well suited to this task because this wrap-round vision allows them to assess obstacles on either side. They can also stabilise their vision and switch rapidly between views using what is called a "head saccade", a small rapid movement of the head.

This research is being presented at the Society for Experimental Biology annual
conference in Glasgow on the 1st of July, 2011.
The researchers also showed that the birds have other skills that would be important for auto-piloted machines, for example they tend to choose the straightest routes. "This is a very efficient way of getting through the forest, because the birds have to do less turns and therefore use less energy but also because they reach the other side quicker," says Dr Lin. "Another interesting finding is that pigeons seems to exit the forest heading in exactly the same direction as when they entered, in spite of all the twist and turns they made in the forest."

When using a robot or an unmanned air-craft it would be invaluable to simply provide it with the coordinates of the destination without having to give it detailed information of all the obstacles it might meet on the way. "If we could develop the technology to follow the same methods as birds we could let the robot get on with it without giving it any more input," says Dr. Lin.

Daisy Brickhill | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>