Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than a good eye: Carnegie Mellon robot uses arms, location and more to discover objects

07.05.2013
HERB, the robot butler, continually improves its understanding of objects

A robot can struggle to discover objects in its surroundings when it relies on computer vision alone. But by taking advantage of all of the information available to it — an object's location, size, shape and even whether it can be lifted — a robot can continually discover and refine its understanding of objects, say researchers at Carnegie Mellon University's Robotics Institute.


Carnegie Mellon University researchers have shown that a two-armed mobile robot, called HERB, can continually discover and refine its understanding of objects by taking advantage of all of the information available, including the object's location, size, shape and even whether it can be lifted.

Credit: Carnegie Mellon University

The Lifelong Robotic Object Discovery (LROD) process developed by the research team enabled a two-armed, mobile robot to use color video, a Kinect depth camera and non-visual information to discover more than 100 objects in a home-like laboratory, including items such as computer monitors, plants and food items. Normally, the CMU researchers build digital models and images of objects and load them into the memory of HERB — the Home-Exploring Robot Butler — so the robot can recognize objects that it needs to manipulate.

Virtually all roboticists do something similar to help their robots recognize objects. With the team's implementation of LROD, called HerbDisc, the robot now can discover these objects on its own. With more time and experience, HerbDisc gradually refines its models of the objects and begins to focus its attention on those that are most relevant to its goal — helping people accomplish tasks of daily living. Findings from the research study will be presented May 8 at the IEEE International Conference on Robotics and Automation in Karlsruhe, Germany.

The robot's ability to discover objects on its own sometimes takes even the researchers by surprise, said Siddhartha Srinivasa, associate professor of robotics and head of the Personal Robotics Lab, where HERB is being developed. In one case, some students left the remains of lunch — a pineapple and a bag of bagels — in the lab when they went home for the evening. The next morning, they returned to find that HERB had built digital models of both the pineapple and the bag and had figured out how it could pick up each one.

"We didn't even know that these objects existed, but HERB did," said Srinivasa, who jointly supervised the research with Martial Hebert, professor of robotics. "That was pretty fascinating."

Discovering and understanding objects in places filled with hundreds or thousands of things will be a crucial capability once robots begin working in the home and expanding their role in the workplace. Manually loading digital models of every object of possible relevance simply isn't feasible, Srinivasa said. "You can't expect Grandma to do all this," he added.

Object recognition has long been a challenging area of inquiry for computer vision researchers. Recognizing objects based on vision alone quickly becomes an intractable computational problem in a cluttered environment, Srinivasa said. But humans don't rely on sight alone to understand objects; babies will squeeze a rubber ducky, beat it against the tub, dunk it — even stick it in their mouth. Robots, too, have a lot of "domain knowledge" about their environment that they can use to discover objects.

Taking advantage of all of HERB's senses required a research team with complementary expertise — Srinivasa's insights on robotic manipulation and Hebert's in-depth knowledge of computer vision. Alvaro Collet, a robotics Ph.D. student they co-advised, led the development of HerbDisc. Collet is now a scientist at Microsoft.

Depth measurements from HERB's Kinect sensors proved to be particularly important, Hebert said, providing three-dimensional shape data that is highly discriminative for household items.

Other domain knowledge available to HERB includes location — whether something is on a table, on the floor or in a cupboard. The robot can see whether a potential object moves on its own, or is moveable at all. It can note whether something is in a particular place at a particular time. And it can use its arms to see if it can lift the object — the ultimate test of its "objectness."

"The first time HERB looks at the video, everything 'lights up' as a possible object," Srinivasa said. But as the robot uses its domain knowledge, it becomes clearer what is and isn't an object. The team found that adding domain knowledge to the video input almost tripled the number of objects HERB could discover and reduced computer processing time by a factor of 190. A HERB's-eye view of objects is available on YouTube.

HERB's definition of an object — something it can lift — is oriented toward its function as an assistive device for people, doing things such as fetching items or microwaving meals. "It's a very natural, robot-driven process," Srinivasa said. "As capabilities and situations change, different things become important." For instance, HERB can't yet pick up a sheet of paper, so it ignores paper. But once HERB has hands capable of manipulating paper, it will learn to recognize sheets of paper as objects.

Though not yet implemented, HERB and other robots could use the Internet to create an even richer understanding of objects. Earlier work by Srinivasa showed that robots can use crowdsourcing via Amazon Mechanical Turk to help understand objects. Likewise, a robot might access image sites, such as RoboEarth, ImageNet or 3D Warehouse, to find the name of an object, or to get images of parts of the object it can't see.

Bo Xiong, a student at Connecticut College, and Corina Gurau, a student at Jacobs University in Bremen, Germany, also contributed to this study.

HERB is a project of the Quality of Life Technology Center, a National Science Foundation engineering research center operated by Carnegie Mellon and the University of Pittsburgh. The center is focused on the development of intelligent systems that improve quality of life for everyone while enabling older adults and people with disabilities.

The Robotics Institute is part of Carnegie Mellon's School of Computer Science. Follow the school on Twitter @SCSatCMU.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 12,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon has campuses in Pittsburgh, Pa., California's Silicon Valley and Qatar, and programs in Africa, Asia, Australia, Europe and Mexico. The university has exceeded its $1 billion campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements. The campaign closes June 30, 2013.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Interdisciplinary Research:

nachricht NRL clarifies valley polarization for electronic and optoelectronic technologies
20.10.2017 | Naval Research Laboratory

nachricht Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens
19.10.2017 | University of Illinois College of Engineering

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>