Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With light echoes, the invisible becomes visible

17.06.2014

Scientists at the University of Bonn and the University of British Columbia (Vancouver, Canada) have developed a novel camera system which can see around the corner without using a mirror. Using diffusely reflected light, it reconstructs the shape of objects outside of the field of view.

The researchers will be reporting their results at the international Conference for Computer Vision and Pattern Recognition (CVPR) from June 24-27 in Columbus (Ohio, USA).


Prof. Dr.-Ing. Matthias Hullin from the Institute of Computer Science II at the University of Bonn.

Photo: Hullin

A laser shines on the wall; a camera watches the scene. Nothing more than white ingrain wallpaper with a bright spot of light can be seen through the lens. A computer records these initially unremarkable images and as the data is processed further, little by little, the outlines of an object appear on a screen.

Yet, this object is behind a partition and the camera cannot possibly have seen it – we have apparently looked around the corner. A magic trick? "No," says Prof. Dr.-Ing. Matthias B. Hullin from the Institute of Computer Science II at the University of Bonn. "This is an actual reconstruction from diffusely scattered light. Our camera, combined with a mathematical procedure, enables us to virtually transform this wall into a mirror."

Scattered light is used as a source of information

The laser dot on the wall is by itself a source of scattered light, which serves as the crucial source of information. Some of this light, in a roundabout way, falls back onto the wall and finally into the camera. "We are recording a kind of light echo, that is, time-resolved data, from which we can reconstruct the object," explains the Bonn computer scientist. "Part of the light has also come into contact with the unknown object and it thus brings valuable information with it about its shape and appearance."

To be able to measure such echoes, a special camera system is required which Prof. Hullin has developed together with his colleagues at the University of British Columbia (Vancouver, Canada) and further refined after his return to Bonn. In contrast to conventional cameras, it records not just the direction from which the light is coming but also how long it took the light to get from the source to the camera.

The technical complexity for this is comparatively low – suitable image sensors came onto the mass market long ago. They are mainly found in depth image cameras as they are used, for instance, as video game controllers or for range measurements in the automotive field. The actual challenge is to elicit the desired information from such time-of-flight measurements. Hullin compares the situation to a room which reverberates so greatly that one can no longer have a conversation with one's partner. "In principle, we are measuring nothing other than the sum of numerous light reflections which reached the camera through many different paths and which are superimposed on each other on the image sensor."

This problem, known as multipath interference, has been giving engineers headaches for a long time. Traditionally, one would attempt to remove the undesired multipath scatter and only use the direct portion of the signal. Based on an advanced mathematical model, Hullin and his colleagues, however, developed a method which can obtain the desired information exclusively from what would usually be considered noise rather than signal. Since multipath light also originates from objects which are not at all in the field of view, the researchers can thus make visible what is virtually invisible.

Minimal technical complexity and intelligent programming

"The accuracy of our method has its limits, of course," says Prof. Hullin – the results are still limited to rough outlines. However, the researchers assume that based on the rapid development of technical components and mathematical models, an even higher resolution can be achieved soon. Together with his colleagues, he will present the method at the international Conference for Computer Vision and Pattern Recognition (CVPR) from June 24 to 27 in Columbus (Ohio, USA). The new technology is received with great interest – Hullin hopes that similar approaches can be used, for example, in telecommunications, remote sensing and medical imaging.

Publication: Felix Heide, Lei Xiao, Wolfgang Heidrich und Matthias B. Hullin, "Diffuse Mirrors: 3D Reconstruction from Diffuse Indirect Illumination Using Inexpensive Time-of-Flight Sensors“.

Contact information:

Prof. Dr.-Ing. Matthias B. Hullin
Institute of Computer Science II
University of Bonn
Tel. 0228/7354169
E-Mail: hullin@cs.uni-bonn.de

Weitere Informationen:

http://cg.cs.uni-bonn.de/multipath/ Publication
http://youtu.be/af6rhRPPwRs Podcast

Johannes Seiler | idw - Informationsdienst Wissenschaft

More articles from Innovative Products:

nachricht Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux
28.04.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Winter Hack: Textured Rubber that Grips Slick, Icy Surfaces
18.03.2015 | American Institute of Physics (AIP)

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>