Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first virtual reality technology to let you see, hear, smell, taste and touch

05.03.2009
The first virtual reality headset that can stimulate all five senses will be unveiled at a major science event in London on March 4th.

What was it really like to live in Ancient Egypt? What did the streets there actually look, sound and smell like? For decades, Virtual Reality has held out the hope that, one day, we might be able visit all kinds of places and periods as 'virtual' tourists.

To date, though, Virtual Reality devices have not been able to stimulate simultaneously all five senses with a high degree of realism.

But with funding from the Engineering and Physical Sciences Research Council (EPSRC), scientists from the Universities of York and Warwick believe they have been able to pinpoint the necessary expertise to make this possible, in a project called 'Towards Real Virtuality'.

'Real Virtuality' is a term coined by the project team to highlight their aim of providing a 'real' experience in which all senses are stimulated in such a way that the user has a fully immersive perceptual experience, during which s/he cannot tell whether or not it is real.

Teams at York and Warwick now aim to link up with experts at the Universities of Bangor, Bradford and Brighton to develop the 'Virtual Cocoon' – a new Real Virtuality device that can stimulate all five senses much more realistically than any other current or prospective device.

For the user the 'Virtual Cocoon' will consist of a headset incorporating specially developed electronics and computing capabilities. It could help unlock the full potential benefits of Real Virtuality in fields such as education, business and environmental protection.

A mock-up of the Virtual Cocoon will be on display at 'Pioneers 09', an EPSRC showcase event to be held at London's Olympia Conference Centre on Wednesday 4th March.

Professor David Howard of the University of York, lead scientist on the initiative, says: "Virtual Reality projects have typically only focused on one or two of the five senses – usually sight and hearing. We're not aware of any other research group anywhere else in the world doing what we plan to do.

"Smell will be generated electronically via a new technique being pioneered by Alan Chalmers and his team at Warwick which will deliver a pre-determined smell recipe on-demand. Taste and smell are closely linked but we intend to provide a texture sensation relating to something being in the mouth. Tactile devices will provide touch."

A key objective will be to optimise the way all five senses interact, as in real life. The team also aim to make the Virtual Cocoon much lighter, more comfortable and less expensive than existing devices, as a result of the improved computing and electronics they develop.

There has been considerable public debate on health & safety as well as on ethical issues surrounding Real Virtuality, since this kind of technology fundamentally involves immersing users in virtual environments that separate them from the real world.

Professor David Howard says: "In addition to the technical development of the Virtual Cocoon, we aim to closely evaluate the full, far-reaching economic and other implications of more widespread application of Real Virtuality technologies for society as a whole."

Dan Stern | EurekAlert!
Further information:
http://www.epsrc.ac.uk

More articles from Innovative Products:

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>