Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Design Low-Cost Surgical Lamp for Developing Nations

05.05.2009
Engineering students have developed a low-cost, battery-powered surgical lamp to be used in developing nations where electricity isn't reliable.

Earlier this month, members of Michigan Health Engineered for All Lives, or M-HEAL, sent their prototype lamp to Uganda where it will undergo testing.

"The power grid is very unreliable in developing countries," said Stephen DeWitt, co-founder of M-HEAL and leader of the team that built the lamp. "If you're in the middle of surgery and the lights go out, that's very bad news for the patient. We don't think that's acceptable. We're building a low-cost alternative that has a lot of the performance of a full-scale, Western surgical lamp." DeWitt is a graduating senior in engineering physics in the College of Engineering.

The lamp is made of a pie pan, a bike brake, a joint from a car rearview mirror and light-emitting diode flashlight components. It is affixed to an adjustable pole on wheels. DeWitt estimates it would cost around $300 to build, now that the team has developed the blueprints. That's more than $500 less than the closest competition.

"The lamp is really exciting because it's M-HEAL's first design project," said Julia Samorezov, a graduating senior in biomedical engineering and co-founder of M-HEAL. "These guys did a great job. They focused on what resources are available in the developing world and how to use local materials in a sustainable way."

M-HEAL's primary mission is to design, build and repair medical equipment to improve access to healthcare technology in the developing world. The group regularly travels to Detroit-based nonprofit World Medical Relief to repair used medical equipment and distribute it to places across the globe. M-HEAL plans to expand into more design projects. They also intend to improve the lamp with the feedback they get on the prototype. Eventually, they hope to produce an instruction manual so that these lamps could be built where they're needed with local materials.

Other members of the surgical lamp team are undergraduate biomedical engineering students Elliot Hwang, Michael Weist, Michael Harrison and Phil Guan; biomedical engineering graduate students Carl McGill, Seth Koehler and Chris Voge; and applied physics graduate student Abigail Mechtenberg. The team's faculty adviser is Aileen Huang-Saad, a lecturer and assistant research scientist in the Department of Biomedical Engineering.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.umich.edu/~mheal
http://www.engin.umich.edu

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>