Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Design Low-Cost Surgical Lamp for Developing Nations

05.05.2009
Engineering students have developed a low-cost, battery-powered surgical lamp to be used in developing nations where electricity isn't reliable.

Earlier this month, members of Michigan Health Engineered for All Lives, or M-HEAL, sent their prototype lamp to Uganda where it will undergo testing.

"The power grid is very unreliable in developing countries," said Stephen DeWitt, co-founder of M-HEAL and leader of the team that built the lamp. "If you're in the middle of surgery and the lights go out, that's very bad news for the patient. We don't think that's acceptable. We're building a low-cost alternative that has a lot of the performance of a full-scale, Western surgical lamp." DeWitt is a graduating senior in engineering physics in the College of Engineering.

The lamp is made of a pie pan, a bike brake, a joint from a car rearview mirror and light-emitting diode flashlight components. It is affixed to an adjustable pole on wheels. DeWitt estimates it would cost around $300 to build, now that the team has developed the blueprints. That's more than $500 less than the closest competition.

"The lamp is really exciting because it's M-HEAL's first design project," said Julia Samorezov, a graduating senior in biomedical engineering and co-founder of M-HEAL. "These guys did a great job. They focused on what resources are available in the developing world and how to use local materials in a sustainable way."

M-HEAL's primary mission is to design, build and repair medical equipment to improve access to healthcare technology in the developing world. The group regularly travels to Detroit-based nonprofit World Medical Relief to repair used medical equipment and distribute it to places across the globe. M-HEAL plans to expand into more design projects. They also intend to improve the lamp with the feedback they get on the prototype. Eventually, they hope to produce an instruction manual so that these lamps could be built where they're needed with local materials.

Other members of the surgical lamp team are undergraduate biomedical engineering students Elliot Hwang, Michael Weist, Michael Harrison and Phil Guan; biomedical engineering graduate students Carl McGill, Seth Koehler and Chris Voge; and applied physics graduate student Abigail Mechtenberg. The team's faculty adviser is Aileen Huang-Saad, a lecturer and assistant research scientist in the Department of Biomedical Engineering.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu
http://www.umich.edu/~mheal
http://www.engin.umich.edu

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>