Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep well! New pillow encasings combine hygiene and sleep comfort

24.02.2014
Encasings are most familiar as covers used by allergy sufferers to protect mattresses, pillows and duvets from dust mites.

However, these particletight  covers are also an important hygiene precaution anywhere where bed occupancy changes regularly. Greater use of special pillow encasings would make sense in
hospitals and care homes and also in hotels. The covers are bacteria-proof and, like the pillowcases on top of them, are changed and hygienically washed every time someone new occupies the bed. This ensures that no bacteria can be passed via the pillow from one guest or resident to another.


In the newly developed pillow encasings, bacteria-proof warp-knitted fabrics are combined with special membrane materials.

Alexander Raths ©Shutterstock.com


Tests in the acoustics laboratory allowed the ideal combination of materials for suppressing irritating noises to be found.

©Hohenstein Institute

Until now, though, there were some real disadvantages to the encasings that were available on the market, on account of the coated membrane inside them: people found them less comfortable to sleep on because of the disturbing rustling noises and the delayed release of air when they moved about. Now, as part of a research project (AIF No. 16947N), scientists at the Hohenstein Institute have developed a new kind of pillow encasing. Firstly, thanks to the use of bacteria-proof warp-knitted fabrics with a special membrane, the noise has been noticeably suppressed. Secondly, they are more breathable than earlier products, i.e. they absorb the sleeper's sweat more effectively and wick it away from his or her head and body.

First of all, the team led by Dr. Jan Beringer analysed all the things for which existing pillow encasings were criticised and then they designed an entirely new and optimised product. The textile researcher is sure that the new pillow encasings will be widely welcomed. "Until now, despite their clear advantages in terms of hygiene, pillow encasings have not been very widely used in this kind of institution.

Weighing up the costs and the benefits often resulted in conventional pillow encasings not being used," says Dr. Beringer. "It's not surprising, because there were lots of complaints about the loud rustling noise, the "airbag effect" caused by delayed release of air and generally disturbed sleep due, for example, to excessive sweating." 

In their research, the scientists paid particular attention to reducing the loud rustling noises which occur right in your ear as you move your head, and so greatly impair your rest or recovery. Considerable noise reduction was achieved by ensuring that the fabrics used were ideally suited to their purpose. The underlying design principle is that a fabric should be chosen that is as fine as possible. In this project, warp-knitted fabrics were used.

The application of a membrane to the underside of the fabric provided the textile technology solution for the hygiene security that was also required. Combining the optimised fabric with the specially chosen membranes as a protective barrier against bacteria ensured that there would be no more disturbing rustling noises when people moved about in bed. In a further step, the researchers optimised the way the warp-knitted fabric and the membrane system were combined, with regard to their effects on thermophysiological comfort (thermal insulation, permeability to water vapour) and skin sensory comfort (softness, suppleness). Finally, they tested how well the textile construction withstood commercial processing conditions. If the newly developed pillow encasings are to be suitable for leasing, it is important that there is no reduction in their performance due to commercial processing. 

The encasings will mainly be effective in improving hygiene conditions where there are frequent changes of occupancy in care homes, especially during short-term or preventive stays. Thanks to encasings, hotel guests can also climb into their hotel beds without worrying about hygiene. For Dr. Beringer and his team, it was a worthwhile exercise: "This pillow encasing, optimised in every respect, is our contribution to improved comfort and hygiene in hospitals, care homes and hotels. It also allows managers to do a great deal to help their patients or guests get a good night's sleep which will, in turn, help them to relax or recover."

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_54784.xhtml

Rose-Marie Riedl | idw - Informationsdienst Wissenschaft

Further reports about: construction skin textile warp-knitted fabrics

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>