Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sleep well! New pillow encasings combine hygiene and sleep comfort

24.02.2014
Encasings are most familiar as covers used by allergy sufferers to protect mattresses, pillows and duvets from dust mites.

However, these particletight  covers are also an important hygiene precaution anywhere where bed occupancy changes regularly. Greater use of special pillow encasings would make sense in
hospitals and care homes and also in hotels. The covers are bacteria-proof and, like the pillowcases on top of them, are changed and hygienically washed every time someone new occupies the bed. This ensures that no bacteria can be passed via the pillow from one guest or resident to another.


In the newly developed pillow encasings, bacteria-proof warp-knitted fabrics are combined with special membrane materials.

Alexander Raths ©Shutterstock.com


Tests in the acoustics laboratory allowed the ideal combination of materials for suppressing irritating noises to be found.

©Hohenstein Institute

Until now, though, there were some real disadvantages to the encasings that were available on the market, on account of the coated membrane inside them: people found them less comfortable to sleep on because of the disturbing rustling noises and the delayed release of air when they moved about. Now, as part of a research project (AIF No. 16947N), scientists at the Hohenstein Institute have developed a new kind of pillow encasing. Firstly, thanks to the use of bacteria-proof warp-knitted fabrics with a special membrane, the noise has been noticeably suppressed. Secondly, they are more breathable than earlier products, i.e. they absorb the sleeper's sweat more effectively and wick it away from his or her head and body.

First of all, the team led by Dr. Jan Beringer analysed all the things for which existing pillow encasings were criticised and then they designed an entirely new and optimised product. The textile researcher is sure that the new pillow encasings will be widely welcomed. "Until now, despite their clear advantages in terms of hygiene, pillow encasings have not been very widely used in this kind of institution.

Weighing up the costs and the benefits often resulted in conventional pillow encasings not being used," says Dr. Beringer. "It's not surprising, because there were lots of complaints about the loud rustling noise, the "airbag effect" caused by delayed release of air and generally disturbed sleep due, for example, to excessive sweating." 

In their research, the scientists paid particular attention to reducing the loud rustling noises which occur right in your ear as you move your head, and so greatly impair your rest or recovery. Considerable noise reduction was achieved by ensuring that the fabrics used were ideally suited to their purpose. The underlying design principle is that a fabric should be chosen that is as fine as possible. In this project, warp-knitted fabrics were used.

The application of a membrane to the underside of the fabric provided the textile technology solution for the hygiene security that was also required. Combining the optimised fabric with the specially chosen membranes as a protective barrier against bacteria ensured that there would be no more disturbing rustling noises when people moved about in bed. In a further step, the researchers optimised the way the warp-knitted fabric and the membrane system were combined, with regard to their effects on thermophysiological comfort (thermal insulation, permeability to water vapour) and skin sensory comfort (softness, suppleness). Finally, they tested how well the textile construction withstood commercial processing conditions. If the newly developed pillow encasings are to be suitable for leasing, it is important that there is no reduction in their performance due to commercial processing. 

The encasings will mainly be effective in improving hygiene conditions where there are frequent changes of occupancy in care homes, especially during short-term or preventive stays. Thanks to encasings, hotel guests can also climb into their hotel beds without worrying about hygiene. For Dr. Beringer and his team, it was a worthwhile exercise: "This pillow encasing, optimised in every respect, is our contribution to improved comfort and hygiene in hospitals, care homes and hotels. It also allows managers to do a great deal to help their patients or guests get a good night's sleep which will, in turn, help them to relax or recover."

Weitere Informationen:

http://www.hohenstein.de/en/inline/pressrelease_54784.xhtml

Rose-Marie Riedl | idw - Informationsdienst Wissenschaft

Further reports about: construction skin textile warp-knitted fabrics

More articles from Innovative Products:

nachricht Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux
28.04.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Winter Hack: Textured Rubber that Grips Slick, Icy Surfaces
18.03.2015 | American Institute of Physics (AIP)

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>