Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safe motorcycle helmets – made of carrot fibers?

06.08.2015

Crackpot idea or recipe for success? This is a question entrepreneurs often face. Is it worth converting the production process to a new, ecologically better material? Empa has developed an analysis method that enables companies to simulate possible scenarios – and therefore avoid bad investments. Here’s an example: Nanofibers made of carrot waste from the production of carrot juice, which can be used to reinforce synthetic parts.

All over the world, research is being conducted into biodegradable and recyclable synthetics. However, fiber-reinforced components remain problematic – if glass or carbon fibers are used.


Motorcycle helmets made of plant fibers from the production of carrot juice? Empa researchers analyze whether this kind of production makes sense from an ecological and economical perspective.

Empa

Within the scope of an EU research project, the Scottish company Cellucomp Limited has now developed a method to obtain nanofibers from carrot waste. These fibers would be both cost-effective and biodegradable. However, is the method, which works in the lab, also marketable on a large scale?

An MPAS (multi-perspective application selection) method developed at Empa helps identify the industrial sectors where new materials might be useful from a technical and economical perspective. At the same time, MPAS also considers the ecological aspect of these new materials. The result for our example: Nanofibers made of carrot waste might be used in the production of motorcycle helmets or side walls for motorhomes in the future.

Three-step analysis

In order to clarify a new material’s market potential, Empa researchers Fabiano Piccinno, Roland Hischier and Claudia Som proceed in three steps for the MPAS method. First of all, the field of possible applications is defined: Which applications come into question based on the technical properties and what categories can they be divided into? Can the new material replace an existing one?

The second step concerns the technical feasibility and market potential: Can the material properties required be achieved with the technical process? Might the product quality vary from one production batch to the next? Can the lab process be upgraded to an industrial scale cost-effectively? Is the material more suited to the low-cost sector or expensive luxury goods? And finally: Does the product meet the legal standards and the customers’ certification needs?

In the third step, the ecological aspect is eventually examined: Is this new material for the products identified really more environmentally friendly – once all the steps from product creation to recycling have been factored in? Which factors particularly need to be considered during production stage to manufacture the material in as environmentally friendly a way as possible?

Industrial production on a five-ton scale – calculated theoretically

The MPAS approach enables individual scenarios for a future production to be calculated with an extremely high degree of accuracy. In the case of the carrot waste nanofibers, for instance, it is crucial whether five tons of fresh carrots or only 209 kilograms of carrot waste (fiber waste from the juicing process) are used as the base material for their production.

The issue of whether the solvent is ultimately recycled or burned affects the production costs. And the energy balance depends on how the enzymes that loosen the fibers from the carrots are deactivated. In the lab, this takes place via heat; for production on an industrial level, the use of bleaching agents would be more cost-effective.

Conclusion: six possible applications for “carrot fibers“

For fiber production from carrot waste, the MPAS analysis identified six possible customer segments for the Scottish manufacturer Cellucomp that are worth taking a closer look at: Protective equipment and devices for recreational sport, special vehicles, furniture, luxury consumer goods and industrial manufacturing.

The researchers listed the following examples: Motorcycle helmets and surfboards, side walls for motorhomes, dining tables, high-end loudspeaker boxes and product protection mats for marble-working businesses. Similarly detailed analyses can also be conducted for other renewable materials – before a lot of money is actually invested in production plants.

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/160273/---/l=2

Rainer Klose | EMPA

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

EGU General Assembly: Meeting programme online, provisional press conference topics

02.03.2017 | Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

 
Latest News

DFKI and Hitachi jointly develop AI technology for human activity recognition of workers

08.03.2017 | Information Technology

Ultrafast detection of a cancer biomarker enabled by innovative nanobiodevice

08.03.2017 | Life Sciences

Capacitive sensors KS – highly accurate even under difficult measurement circumstances

08.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>