Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention breathes new life into tennis balls

14.06.2005


The traditional cry of “new balls please” at tennis courts throughout the country could become a thing of the past thanks to a new invention by a University of Bath student.

Aimée Cubitt, a final year Mechanical Engineering student, has developed a new device which pumps air into tennis balls to extend their useful life and restore the bounce of old balls.

This is useful because tennis balls start to lose their bounce as soon as they are removed from their container as the pressurised air within their rubber core starts to seep out.



Playing with flat balls can increase the likelihood of tennis elbow and causes the ball to behave in a less consistent manner, affecting a player’s game.

In major tournaments, like Wimbledon, umpires need to call for new balls after around every nine games to make sure that the balls stay within the regulations*.

But there is currently no way for amateur players to reinvigorate their tennis balls once they have gone flat, resulting in thousands of balls being thrown away each year and many amateur players using below-regulation balls.

As part of her final year project on the Innovation, Engineering and Design course at the University, Aimée discovered that storing tennis balls in a pressurised container can help slow down pressure loss and even reverse it.

Her invention, which she has called Pump‘n’Bounce, is incorporates a hand-operated pump into a tennis ball canister, allowing players to pressurise the container they store their tennis balls in.

“It is a fairly simple idea really, but the tests have shown that you can quite literally breathe new life into tennis balls by putting them under pressure,” said Aimée, who graduates in July.

“Pump‘n’Bounce is a small device which will allow amateur tennis players to get the most out of their tennis balls. The tennis players I have surveyed are really keen to get their hands on the product.

“It should be possible to manufacture and sell Pump’n’Bounce for about £15, and players will be able to recoup their costs fairly quickly, as initial tests have shown that it is possible to double if not treble the lifetime of a tennis ball using this kind of system.”

Aimée, who has been involved in setting up the Student Enterprise Centre at the University of Bath and is a founder member of BANTER, the University’s student enterprise society, is keen to try and develop the product after she graduates.

Manufacturers currently advise players that tennis balls should be stored in the can they came in when they are not in use. This won’t prevent them from losing pressure, but can slow it down.

“Tennis ball manufacturers could sell their tennis balls with a Pump‘n’Bounce canister which would help add value to the product they are selling and extend its lifetime for the benefit of their customers,” said Aimée, who is keen to hear from potential commercial partners interested in helping develop the product.

After graduating in July and taking some time out from studies, Aimée hopes to start a career in product design.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/pumpnbounce140605.html

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>