Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention breathes new life into tennis balls

14.06.2005


The traditional cry of “new balls please” at tennis courts throughout the country could become a thing of the past thanks to a new invention by a University of Bath student.

Aimée Cubitt, a final year Mechanical Engineering student, has developed a new device which pumps air into tennis balls to extend their useful life and restore the bounce of old balls.

This is useful because tennis balls start to lose their bounce as soon as they are removed from their container as the pressurised air within their rubber core starts to seep out.



Playing with flat balls can increase the likelihood of tennis elbow and causes the ball to behave in a less consistent manner, affecting a player’s game.

In major tournaments, like Wimbledon, umpires need to call for new balls after around every nine games to make sure that the balls stay within the regulations*.

But there is currently no way for amateur players to reinvigorate their tennis balls once they have gone flat, resulting in thousands of balls being thrown away each year and many amateur players using below-regulation balls.

As part of her final year project on the Innovation, Engineering and Design course at the University, Aimée discovered that storing tennis balls in a pressurised container can help slow down pressure loss and even reverse it.

Her invention, which she has called Pump‘n’Bounce, is incorporates a hand-operated pump into a tennis ball canister, allowing players to pressurise the container they store their tennis balls in.

“It is a fairly simple idea really, but the tests have shown that you can quite literally breathe new life into tennis balls by putting them under pressure,” said Aimée, who graduates in July.

“Pump‘n’Bounce is a small device which will allow amateur tennis players to get the most out of their tennis balls. The tennis players I have surveyed are really keen to get their hands on the product.

“It should be possible to manufacture and sell Pump’n’Bounce for about £15, and players will be able to recoup their costs fairly quickly, as initial tests have shown that it is possible to double if not treble the lifetime of a tennis ball using this kind of system.”

Aimée, who has been involved in setting up the Student Enterprise Centre at the University of Bath and is a founder member of BANTER, the University’s student enterprise society, is keen to try and develop the product after she graduates.

Manufacturers currently advise players that tennis balls should be stored in the can they came in when they are not in use. This won’t prevent them from losing pressure, but can slow it down.

“Tennis ball manufacturers could sell their tennis balls with a Pump‘n’Bounce canister which would help add value to the product they are selling and extend its lifetime for the benefit of their customers,” said Aimée, who is keen to hear from potential commercial partners interested in helping develop the product.

After graduating in July and taking some time out from studies, Aimée hopes to start a career in product design.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/pumpnbounce140605.html

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>