Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention breathes new life into tennis balls

14.06.2005


The traditional cry of “new balls please” at tennis courts throughout the country could become a thing of the past thanks to a new invention by a University of Bath student.

Aimée Cubitt, a final year Mechanical Engineering student, has developed a new device which pumps air into tennis balls to extend their useful life and restore the bounce of old balls.

This is useful because tennis balls start to lose their bounce as soon as they are removed from their container as the pressurised air within their rubber core starts to seep out.



Playing with flat balls can increase the likelihood of tennis elbow and causes the ball to behave in a less consistent manner, affecting a player’s game.

In major tournaments, like Wimbledon, umpires need to call for new balls after around every nine games to make sure that the balls stay within the regulations*.

But there is currently no way for amateur players to reinvigorate their tennis balls once they have gone flat, resulting in thousands of balls being thrown away each year and many amateur players using below-regulation balls.

As part of her final year project on the Innovation, Engineering and Design course at the University, Aimée discovered that storing tennis balls in a pressurised container can help slow down pressure loss and even reverse it.

Her invention, which she has called Pump‘n’Bounce, is incorporates a hand-operated pump into a tennis ball canister, allowing players to pressurise the container they store their tennis balls in.

“It is a fairly simple idea really, but the tests have shown that you can quite literally breathe new life into tennis balls by putting them under pressure,” said Aimée, who graduates in July.

“Pump‘n’Bounce is a small device which will allow amateur tennis players to get the most out of their tennis balls. The tennis players I have surveyed are really keen to get their hands on the product.

“It should be possible to manufacture and sell Pump’n’Bounce for about £15, and players will be able to recoup their costs fairly quickly, as initial tests have shown that it is possible to double if not treble the lifetime of a tennis ball using this kind of system.”

Aimée, who has been involved in setting up the Student Enterprise Centre at the University of Bath and is a founder member of BANTER, the University’s student enterprise society, is keen to try and develop the product after she graduates.

Manufacturers currently advise players that tennis balls should be stored in the can they came in when they are not in use. This won’t prevent them from losing pressure, but can slow it down.

“Tennis ball manufacturers could sell their tennis balls with a Pump‘n’Bounce canister which would help add value to the product they are selling and extend its lifetime for the benefit of their customers,” said Aimée, who is keen to hear from potential commercial partners interested in helping develop the product.

After graduating in July and taking some time out from studies, Aimée hopes to start a career in product design.

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/pumpnbounce140605.html

More articles from Innovative Products:

nachricht Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux
28.04.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Winter Hack: Textured Rubber that Grips Slick, Icy Surfaces
18.03.2015 | American Institute of Physics (AIP)

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>