Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New machines could turn homes into small factories

17.03.2005


A revolutionary machine which can make everything from a cup to a clarinet quickly and cheaply could be in all our homes in the next few years.



Research by engineers at the University of Bath could transform the manufacture of almost all everyday household objects by allowing people to produce them in their own homes at the cost of a few pounds.

The new system is based upon rapid prototype machines, which are now used to produce plastic components for industry such as vehicle parts. The method they use, in which plastic is laid down in designs produced in 3D on computers, could be adapted to make many household items.


However, conventional rapid prototype machines cost around £25,000 to buy. But the latest idea, by Dr Adrian Bowyer, of the University’s Centre for Biomimetics, is that these machines should begin making copies of themselves. These can be used to make further copies of themselves until there are so many machines that they become cheap enough for people to buy and use in their homes.

Dr Bowyer is working on creating the 3D models needed for a rapid prototype machine to make a copy of itself. When this is complete, he will put these on a website so that all owners of an existing conventional machine can download them for free and begin making copies of his machine. The new copies can then be sold to other people, who can in turn copy the machine and sell on.

As the number of the self-replicating machines – there are now thousands of conventional rapid prototype machines – grows rapidly, so the price will fall from £25,000 to a few hundred pounds.

“People have been talking for years about the cost of these machines dropping to be about the same as a computer printer,” said Dr Bowyer. “But it hasn’t happened. Maybe my idea will allow this to occur.”

A machine could, for instance, make a complete set of plates, dishes and bowls out of plastic, coloured and decorated to a design. It could also make metal objects out of a special alloy that melts at low temperatures, making it suitable for use in printed circuit boards for electronics.

The machines would not be able to produce glass items or complex parts such as microchips, or objects that would work under intense heat, such as toasters. But a digital camera could be made for a few pounds, and a lens and computer chip bought separately and added later. The rapid prototype machines would be useful for producing items that are now expensive, such as small musical instruments.

The items produced could be from a few millimetres (0.25 inches) to 300 millimetres (12 inches) in length, width and height. Larger items could be made simply by clipping together parts of this size.

Dr Bowyer said all that would be needed for a machine owner would be to buy the plastic and low-temperature alloy for a few pounds, and items could then be created in a few minutes or a few hours depending on their size. Designs for items could be bought – or downloaded free – from the web. Alternatively, people could create them for themselves on their own PCs.

He said that he would publish the 3D designs and computer code for the machine to replicate itself on the web over the next four years as they are developed, until the entire machine could be copied.

He said that he has not taken out a patent and will not charge for creating the design for the machine. “The most interesting part of this is that we’re going to give it away,” he said.

“At the moment an industrial company consists of hundreds of people building and making things. If these machines take off, it will give individual people the chance to do this themselves, and we are talking about making a lot of our consumer goods – the effect this has on industry and society could be dramatic.”

The machines would be about the size of a refrigerator, and would self-reproduce by making a copy of themselves, part by part. These parts would then have to be assembled manually by their owners.

Dr Bowyer said the machines were a form of Universal Constructor, first proposed theoretically by the mathematician John von Neumann in the 1950s. He also said their progress would be similar to that of a species in nature – as the machines replicated, so their users would vary them to suit their needs, some making larger objects, some more accurate devices and some making devices more quickly.

Dr Bowyer, and his colleague Ed Sells, have already created a demonstration robot with an electrical circuit built in using this technology and funding from the Nuffield Foundation. They hope to get new funding soon to begin work on the other stages of development.

| alfa
Further information:
http://www.bath.ac.uk/pr/releases/replicating-machines.htm

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>