Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant robot helps prevent landslides

12.01.2005


Roboclimber


Fighting landslides is dangerous work, but help from space is on its way. Recent testing in Italy has shown that the four-tonne Roboclimber can secure slopes without endangering human lives, thanks to innovations from Europe’s space programmes.

"It was amazing to see how easily this huge robot managed to operate on a very steep slope to secure a rocky mountain wall,” said Guglielmo Berlasso, Director of the Civil Protection Office in the Friuli-Venezia Giulia region in Italy, where the demonstration took place.

Landslides are a big problem in Italy. More than 400 take place each year causing an estimated €1200 million of damage and often deaths. In the 20th century 5939 people were declared dead or missing due to landslides. Alfredo Sandovar from the European Commission was also present at the Roboclimber demonstration and expressed his great satisfaction with the results. “We are aware of the big dimension of this problem which is why we decided to finance this project,” he said. The setting for the first field demonstration of Roboclimber, one of the largest robots in the world, was the beautiful valley of Alta Val Torre, 25 km north of Udine in the Friuli-Venezia Giulia region of Italy. The mayor of Lusevera selected a near-vertical 30-metrer high rocky wall – similar to a possible landslide location – to enable the Roboclimber to be tested to the full.



The heavy Roboclimber arrived by truck and was installed by ICOP, the construction company that initially proposed the project and the prime contractor for the development. The robot was mounted on the mountain wall and held in place by two wires fixed at the top of the wall. Roberto Zannini from Teve, one of the inventors of the system together with the PMARlab of the University of Genova, supervised the tests designed to demonstrate the agility and efficiency of the robot.

Equipped with a special Comacchio 28 kW drilling machine with an impressive 2400 Newton metre torque, about 80 times stronger than a typical hand-held home electric drill, within minutes Roboclimber had drilled a more than 10-metre deep hole into the rock-solid wall, the first step in the typical procedure used to stabilize walls at risk of landslides.

The drilling was controlled remotely from a safe distance with a computer supplied by the Belgium company SAS and a wireless link. The technique was originally developed to control robots in space. An onboard web-camera enabled the operator to manoeuvre it into the correct position without difficulty, execute the drilling and insert the rods. Once each rod had been inserted the operator moved the robot to the next position, repeating the sequence of drilling and inserting rods. The speed at which the robot inserted rods and secured the wall was very impressive and much faster than the conventional methods used at present. Roboclimber can drill holes 20 meters long and with a diameter of up to 76 mm, in any rock and on any gradient. An innovative rod-house and robotic manipulator allows fully automatic loading and unloading of drilling rods.

At present consolidating risky slopes entails setting up high scaffolding and manually inserting stabilizing rods using hand held tools and drills; a very dangerous job as there is the constant risk of soil or rocks falling and hurting the operators. "The saving in cost and time depends on the type of wall, but can be huge," says Giorgio Pezzuto from D’Appolonia, which played a key role in getting together the right expertise and relevant space technologies.

Enzo Rizzi, Roboclimber project coordinator from ICOP, clarifies, "Assuming a typical landslide front of 5000 square metres requiring 5000 metres of deep drilling, we estimate that the Roboclimber system can save €75 000. In terms of time, the savings are huge: it takes a few hours to install Roboclimber while setting up a scaffold can take days and even weeks in critical situations." "But the most important factor is that with Roboclimber we can secure steep rocky walls without risking human health and lives. We can do it faster, more efficiently and yet much safer," he emphasises.

Roboclimber has been constructed using expertise and technology from Europe’s space programmes. Weighing 3800 kg, with four legs and with a square base of 2 metres by 2.5 metres, Roboclimber is one of the largest robots in the world, yet still very agile and easily controllable. The on-board control system includes algorithms based upon ESA advanced methodology for controlling satellites in space. "The participants are now evaluating the best approach to getting this innovation on the market," says Giorgio Pezzuto. "A new start-up company will guarantee the continuity and availability of our expertise. We intend to provide other services using Roboclimber technology as well as market the Roboclimber platform."

Says Pierre Brisson, head of ESA’s Technology Transfer and Promotion Office, "the experience gained from our many transfers shows that the use of innovative technologies from our space programmes often leads not only to improved solutions but also to new jobs in Europe. In this case our expertise and high-tech from space provide economical gain and better working conditions and safety: the best combination we could wish for."

Pierre Brisson | EurekAlert!
Further information:
http://www.esa.int/esaCP/SEM9R03AR2E_index_0.html
http://www.esa.int

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>