Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fischer-Tropsch: a hot new catalyst for cool biofuel production in microchannel reactors

14.08.2008
A new metal carbide Fischer-Tropsch (FT) catalyst developed by Oxford Catalysts looks set to make second-generation biofuel production using small-scale FT microchannel reactors environmentally and economically viable.

The catalyst was produced using Oxford Catalysts' patented organic matrix combustion (OMX) method, which makes it possible to achieve high metal loadings, while at the same time precisely controlling crystal sizes. The result is a cobalt-based catalyst of the ideal crystal size to provide the optimum level of activity in a microchannel reactor.

The FT reaction is a key technology for producing second-generation biofuels from agricultural waste. Because it takes one tonne of biomass to produce one barrel of liquid fuel, small-scale Fischer-Tropsch reactors are being developed to convert the waste on a distributed basis locally rather than at large collection centres. Microchannel reactors are potentially the best candidates for this job because they enable more efficient and precise temperature control, leading to higher throughput and conversion.

They are also able to dissipate the heat produced from the FT reaction more quickly than conventional systems. But to work efficiently, microchannel reactors require an FT catalyst with a high level of activity in order to boost the conversion rates to an economic level. The new FT catalyst developed by Oxford Catalysts fits this bill exactly.

Following several thousands of hours of rigorous testing, Oxford Catalysts has signed a memorandum of understanding (MOU) with a leading developer of small scale FT microchannel reactors to deploy the new catalyst in small-scale FT applications, including the conversion of bio-waste or flare gas into liquid fuels.

Derek Atkinson, Business Development Director, Oxford Catalysts says:

"We have spent 12 months working on developing this particular catalyst, using our state-of-the-art equipment and our patented OMX method, and are very pleased with the results. The next stage will involve working closely with a catalyst producer to supply tonnage quantities for use in demonstration units. "

Nina Morgan | alfa
Further information:
http://www.oxfordcatalysts.com

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>