Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fischer-Tropsch: a hot new catalyst for cool biofuel production in microchannel reactors

14.08.2008
A new metal carbide Fischer-Tropsch (FT) catalyst developed by Oxford Catalysts looks set to make second-generation biofuel production using small-scale FT microchannel reactors environmentally and economically viable.

The catalyst was produced using Oxford Catalysts' patented organic matrix combustion (OMX) method, which makes it possible to achieve high metal loadings, while at the same time precisely controlling crystal sizes. The result is a cobalt-based catalyst of the ideal crystal size to provide the optimum level of activity in a microchannel reactor.

The FT reaction is a key technology for producing second-generation biofuels from agricultural waste. Because it takes one tonne of biomass to produce one barrel of liquid fuel, small-scale Fischer-Tropsch reactors are being developed to convert the waste on a distributed basis locally rather than at large collection centres. Microchannel reactors are potentially the best candidates for this job because they enable more efficient and precise temperature control, leading to higher throughput and conversion.

They are also able to dissipate the heat produced from the FT reaction more quickly than conventional systems. But to work efficiently, microchannel reactors require an FT catalyst with a high level of activity in order to boost the conversion rates to an economic level. The new FT catalyst developed by Oxford Catalysts fits this bill exactly.

Following several thousands of hours of rigorous testing, Oxford Catalysts has signed a memorandum of understanding (MOU) with a leading developer of small scale FT microchannel reactors to deploy the new catalyst in small-scale FT applications, including the conversion of bio-waste or flare gas into liquid fuels.

Derek Atkinson, Business Development Director, Oxford Catalysts says:

"We have spent 12 months working on developing this particular catalyst, using our state-of-the-art equipment and our patented OMX method, and are very pleased with the results. The next stage will involve working closely with a catalyst producer to supply tonnage quantities for use in demonstration units. "

Nina Morgan | alfa
Further information:
http://www.oxfordcatalysts.com

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>