Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University

11.08.2015

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed by researchers at Tohoku University.

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed at Tohoku University by a research group led by Prof. Shigetoshi Sugawa at the Graduate School of Engineering's Department of Management Science and Technology.


HyperVision HPV-X2. Copyright: Tohoku University.


Ultra-high-speed CMOS image sensor, FTCMOS2. Copyright: Tohoku University.

Shimadzu Corporation, which has been working in cooperation with the university, has now released a new video camera incorporating the ultra-fast CMOS image sensor.

Called the Hyper Vision HPV-X2, the new camera offers a significantly higher photosensitivity than the previous model released in September 2012, while maintaining the recording speed of 10 million frames per second. It is the world's fastest in its class.

The higher photosensitivity means that more vivid images can now be captured even under low light conditions, such as under a microscope.

The improvement in the camera is made possible by the new ultra-high-speed CMOS image sensor, FTCMOS2, which Prof. Sugawa's research group developed by reinvestigating the performance bottleneck and revising the pixel structure and circuit design of previous models.

The higher sensitivity of the ultra-high-speed video camera is expected to be widely used for advanced scientific research. Developments in life-sciences and engineering will benefit, as the new camera will enable the observation of ultra-high-speed phenomena that could not previously be clearly captured.

Examples include the interactions between cancer cells and drug-filled microcapsules, the fuel injection process of automotive fuel injectors, and the ink ejection process of inkjet printers.

Product information and video samples are available at the Shimadzu Corporation website.
http://www.shimadzu.com/an/test/hpv/hpv-x2/index.html

For general information, contact:
Division of Public Relations
Tohoku University School of Engineering
Tel: +81-22-795-5898
Email: eng-preng.tohoku.ac.jp

For product information, contact:
Shimadzu Corporation Public Relations Office
Tel: +81-75-823-1110

For technical information, contact
Sugawa & Kuroda Lab.
Tohoku University Graduate School of Engineering
Tel: +81-22-795-4835
Email: shigetoshi.sugawa.d4tohoku.ac.jp

Associated links
Tohoku University article

Ngaroma Riley | ResearchSea

More articles from Innovative Products:

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>