Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University

11.08.2015

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed by researchers at Tohoku University.

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed at Tohoku University by a research group led by Prof. Shigetoshi Sugawa at the Graduate School of Engineering's Department of Management Science and Technology.


HyperVision HPV-X2. Copyright: Tohoku University.


Ultra-high-speed CMOS image sensor, FTCMOS2. Copyright: Tohoku University.

Shimadzu Corporation, which has been working in cooperation with the university, has now released a new video camera incorporating the ultra-fast CMOS image sensor.

Called the Hyper Vision HPV-X2, the new camera offers a significantly higher photosensitivity than the previous model released in September 2012, while maintaining the recording speed of 10 million frames per second. It is the world's fastest in its class.

The higher photosensitivity means that more vivid images can now be captured even under low light conditions, such as under a microscope.

The improvement in the camera is made possible by the new ultra-high-speed CMOS image sensor, FTCMOS2, which Prof. Sugawa's research group developed by reinvestigating the performance bottleneck and revising the pixel structure and circuit design of previous models.

The higher sensitivity of the ultra-high-speed video camera is expected to be widely used for advanced scientific research. Developments in life-sciences and engineering will benefit, as the new camera will enable the observation of ultra-high-speed phenomena that could not previously be clearly captured.

Examples include the interactions between cancer cells and drug-filled microcapsules, the fuel injection process of automotive fuel injectors, and the ink ejection process of inkjet printers.

Product information and video samples are available at the Shimadzu Corporation website.
http://www.shimadzu.com/an/test/hpv/hpv-x2/index.html

For general information, contact:
Division of Public Relations
Tohoku University School of Engineering
Tel: +81-22-795-5898
Email: eng-preng.tohoku.ac.jp

For product information, contact:
Shimadzu Corporation Public Relations Office
Tel: +81-75-823-1110

For technical information, contact
Sugawa & Kuroda Lab.
Tohoku University Graduate School of Engineering
Tel: +81-22-795-4835
Email: shigetoshi.sugawa.d4tohoku.ac.jp

Associated links
Tohoku University article

Ngaroma Riley | ResearchSea

More articles from Innovative Products:

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>