Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University

11.08.2015

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed by researchers at Tohoku University.

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed at Tohoku University by a research group led by Prof. Shigetoshi Sugawa at the Graduate School of Engineering's Department of Management Science and Technology.


HyperVision HPV-X2. Copyright: Tohoku University.


Ultra-high-speed CMOS image sensor, FTCMOS2. Copyright: Tohoku University.

Shimadzu Corporation, which has been working in cooperation with the university, has now released a new video camera incorporating the ultra-fast CMOS image sensor.

Called the Hyper Vision HPV-X2, the new camera offers a significantly higher photosensitivity than the previous model released in September 2012, while maintaining the recording speed of 10 million frames per second. It is the world's fastest in its class.

The higher photosensitivity means that more vivid images can now be captured even under low light conditions, such as under a microscope.

The improvement in the camera is made possible by the new ultra-high-speed CMOS image sensor, FTCMOS2, which Prof. Sugawa's research group developed by reinvestigating the performance bottleneck and revising the pixel structure and circuit design of previous models.

The higher sensitivity of the ultra-high-speed video camera is expected to be widely used for advanced scientific research. Developments in life-sciences and engineering will benefit, as the new camera will enable the observation of ultra-high-speed phenomena that could not previously be clearly captured.

Examples include the interactions between cancer cells and drug-filled microcapsules, the fuel injection process of automotive fuel injectors, and the ink ejection process of inkjet printers.

Product information and video samples are available at the Shimadzu Corporation website.
http://www.shimadzu.com/an/test/hpv/hpv-x2/index.html

For general information, contact:
Division of Public Relations
Tohoku University School of Engineering
Tel: +81-22-795-5898
Email: eng-preng.tohoku.ac.jp

For product information, contact:
Shimadzu Corporation Public Relations Office
Tel: +81-75-823-1110

For technical information, contact
Sugawa & Kuroda Lab.
Tohoku University Graduate School of Engineering
Tel: +81-22-795-4835
Email: shigetoshi.sugawa.d4tohoku.ac.jp

Associated links
Tohoku University article

Ngaroma Riley | ResearchSea

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

EGU General Assembly: Meeting programme online, provisional press conference topics

02.03.2017 | Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

 
Latest News

DFKI and Hitachi jointly develop AI technology for human activity recognition of workers

08.03.2017 | Information Technology

Ultrafast detection of a cancer biomarker enabled by innovative nanobiodevice

08.03.2017 | Life Sciences

Capacitive sensors KS – highly accurate even under difficult measurement circumstances

08.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>