Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University


An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed by researchers at Tohoku University.

An ultra-high-speed CMOS image sensor that offers 10 million frames per second with ISO16,000 photosensitivity has been developed at Tohoku University by a research group led by Prof. Shigetoshi Sugawa at the Graduate School of Engineering's Department of Management Science and Technology.

HyperVision HPV-X2. Copyright: Tohoku University.

Ultra-high-speed CMOS image sensor, FTCMOS2. Copyright: Tohoku University.

Shimadzu Corporation, which has been working in cooperation with the university, has now released a new video camera incorporating the ultra-fast CMOS image sensor.

Called the Hyper Vision HPV-X2, the new camera offers a significantly higher photosensitivity than the previous model released in September 2012, while maintaining the recording speed of 10 million frames per second. It is the world's fastest in its class.

The higher photosensitivity means that more vivid images can now be captured even under low light conditions, such as under a microscope.

The improvement in the camera is made possible by the new ultra-high-speed CMOS image sensor, FTCMOS2, which Prof. Sugawa's research group developed by reinvestigating the performance bottleneck and revising the pixel structure and circuit design of previous models.

The higher sensitivity of the ultra-high-speed video camera is expected to be widely used for advanced scientific research. Developments in life-sciences and engineering will benefit, as the new camera will enable the observation of ultra-high-speed phenomena that could not previously be clearly captured.

Examples include the interactions between cancer cells and drug-filled microcapsules, the fuel injection process of automotive fuel injectors, and the ink ejection process of inkjet printers.

Product information and video samples are available at the Shimadzu Corporation website.

For general information, contact:
Division of Public Relations
Tohoku University School of Engineering
Tel: +81-22-795-5898

For product information, contact:
Shimadzu Corporation Public Relations Office
Tel: +81-75-823-1110

For technical information, contact
Sugawa & Kuroda Lab.
Tohoku University Graduate School of Engineering
Tel: +81-22-795-4835

Associated links
Tohoku University article

Ngaroma Riley | ResearchSea

More articles from Innovative Products:

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>