Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multilayer nanofibre face mask helps to combat pollution

14.05.2014

Researchers at the Hong Kong Polytechnic University have developed a ground-breaking filter technology that guards against the finest pollutants in the air.

Haze is usually composed of pollutants in the form of tiny suspended particles or fine mists/droplets emitted from vehicles, coal-burning power plants and factories. Continued exposure increases the risk of developing respiratory problems, heart diseases and lung cancer. Can we avoid the unhealthy air?


Professor Wallace Woon-Fong Leung, a renowned filtration expert, and his team from the Department of Mechanical Engineering at PolyU have successfully developed a simple face mask which can block out suspended particles.

Copyright : The Hong Kong Polytechnic University

A simple face mask that can block out suspended particles has been developed by scientists from the Department of Mechanical Engineering at the Hong Kong Polytechnic University (PolyU). The project is led by Professor Wallace Woon-Fong Leung, a renowned filtration expert, who has spent his career understanding these invisible killers.

In Hong Kong, suspended particles PM 10 and PM 2.5 are being monitored. PM 10 refers to particles that are 10 microns (or micrometres) in size or smaller, whereas PM 2.5 measures 2.5 microns or smaller. At the forefront of combating air pollution, Professor Leung targets ultra-fine pollutants that have yet been picked up by air quality monitors – particles measuring 1 micron or below, which he perceived to be a more important threat to human health.

“In my view, nano-aerosols (colloid of fine solid particles or liquid droplets of sub-micron to nano-sizes), such as diesel emissions, are the most lethal for three reasons. First, they are in their abundance by number suspended in the air. Second, they are too small to be filtered out using current technologies. Third, they can pass easily through our lungs and work their way into our respiratory systems, and subsequently our vascular, nervous and lymphatic systems, doing the worst kind of harm.”

However, it would be difficult to breathe through the mask if it were required to block out nano-aerosols. To make an effective filter that is highly breathable, a new filter that provides high filtration efficiency yet low air resistance (or low pressure drop) is required.

According to Professor Leung, pollutant particles get into our body in two ways – by the airflow carrying them and by the diffusion motion of these tiny particles. As the particles are intercepted by the fibres of the mask, they are filtered out before reaching our lungs.

Fibres from natural or synthetic materials can be made into nanofibres around 1/500 of the diameter of a hair (about 0.1 mm) through nanotechnologies. While nanofibres increase the surface area for nano-aerosol interception, they also incur larger air resistance. Professor Leung’s new innovation aims to divide optimal amount of nanofibres into multiple layers separated by a permeable space, allowing plenty of room for air to pass through.

A conventional face mask can only block out about 25% of 0.3-micron nano-aerosols under standard test conditions. Professor Leung said: “The multi-layer nanofibre mask can block out at least 80% of suspended nano-aerosols, even the ones smaller than 0.3 micron. In the meantime, the wearer can breathe as comfortably as wearing a conventional face mask, making it superb for any outdoor occasions. Another option is to provide a nanofiber mask that has the same capture efficiency as conventional face mask, yet it is at least several times more breathable, which would be suitable for the working group.”

The new filtration technology has been well recognized. Recently, Professor Leung and his team won a Gold Medal and a Special Merit Award from the Romania Ministry of National Education at the 42nd International Exhibition of Inventions of Geneva held in Switzerland.

If the breakthrough is turned into tightly-fit surgical masks, they are just as effective against bacteria and viruses whose sizes are under 1 micron. “In the future, medical professionals at the frontline can have stronger protection against deadly bacteria and viruses,” added Professor Leung.

In addition, a new gas purifying technology is under development to convert harmful pollutant gases, such as NOx and volatile organic compound, to harmless substances including acids, carbon dioxide and water vapour.

Going beyond personal protection, the filtration and purifying technologies when combined can also clean the air in buildings and improve indoor air quality. Professor Leung said they could make air-purifying filters that are easily fitted into old and new buildings, without any extra supporting structures or additional costs. Therefore, the potential is limitless; air-purifying filters can also be installed in the cabins of airplanes, vehicles, trains and ships. Such a handy solution can be the way of future for “cleaner and healthier” air.

Associated links

The Hong Kong Polytechnic University | Research SEA News
Further information:
http://www.polyu.edu.hk/ife/corp/en/publications/tech_front.php?tfid=8167
http://www.researchsea.com

Further reports about: Multilayer Polytechnic bacteria conventional droplets lungs micron particles pollutant resistance vehicles viruses

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>