Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Cost, Dexterous Robotic Hand Operated by Compressed Air

05.05.2009
The Robotics and Mechanisms Laboratory (RoMeLa) of the College of Engineering at Virginia Tech has developed a unique robotic hand that can firmly hold objects as heavy as a can of food or as delicate as a raw egg, while dexterous enough to gesture for sign language.

Named RAPHaEL (Robotic Air Powered Hand with Elastic Ligaments), the fully articulated robotic hand is powered by a compressor air tank at 60 psi and a novel accordion type tube actuator. Microcontroller commands operate the movement to coordinate the motion of the fingers.

“This air-powered design is what makes the hand unique, as it does not require the use of any motors or other actuators, the grasping force and compliance can be easily adjusted by simply changing the air pressure,” said Dennis Hong, RoMeLa (http://www.me.vt.edu/romela/) director and the faculty adviser on the project. RoMeLa is part of Virginia Tech’s department of mechanical engineering (ME).

The grip derives from the extent of pressure of the air. A low pressure is used for a lighter grip, while a higher pressure allows for a sturdier grip. The compliance of compressed air also aids in the grasping as the fingers can naturally follow the contour of the grasped object.

“There would be great market potential for this hand, such as for robotic prosthetics, due to the previously described benefits, as well as low cost, safety and simplicity,” Hong said. The concept has won RoMeLa first place in the recent 2008-2009 Compressed Air and Gas Institute (http://www.cagi.org) (CAGI)’s Innovation Award Contest, with team members sharing $2,500 and the College of Engineering receiving a separate $8,000 monetary award.

The $10,500 prize was announced in April by the Cleveland, Ohio-based CAGI, an industry organization. The design competition was an invitation-only program, with projects overviews – including written reports and video – being sent to the judging panel. Teams from Virginia Tech, the Milwaukee School of Engineering and Buffalo State College each submitted entries on their air-powered designs for judging. Six teams in all participated, according to Hong.

It is the second year in a row that RoMeLa has won first place in the CAGI competition. A judge on the panel said of the robotic hand, “It is a cutting edge concept, and the engineering was no less than brilliant.”

Student team members, all ME majors, are:

• Colin Smith of Reston, Va., a senior

• Kyle Cothern of Fredericksburg, Va., a junior.

• Carlos Guevara of El Salvador, a senior.

• Alexander McCraw of York, Pa., a senior.

RAPHaEL is just part of a larger RoMeLa project: The humanoid robot known as CHARLI (Cognitive Humanoid Robot with Learning Intelligence). The hand already is on its second prototype design, with the newer model to be used by CHARLI. Once the newer model hand is connected to the larger body, it will be able to pick up – not just grasp and hold – objects as would a person.

Hong has said CHARLI is the first full-sized bipedal walking humanoid robot to be built entirely in the United States. The 5-foot tall robot will be used as a general humanoid research platform as well as for the RoboCup Humanoid Teen size league for RoboCup 2010.

The larger CHARLI project is partially sponsored by the Virginia Tech Student Engineering Council (https://www.sec.vt.edu/) and by the National Science Foundation (NSF). Hong said he hopes to have CHARLI one day walking about around campus and completing tours of Virginia Tech for visitors and potential students.

RoMeLa already has captured several prizes for its work, including the grand prize at the 2008 International Capstone Design Fair (http://www.vtnews.vt.edu/story.php?relyear=2008&itemno=808) for a trio of pole-climbing serpentine robots designed to take the place of construction workers tasked with dangerous jobs such as inspecting high-rises or underwater bridge piers.

Other award-winning student RoMeLa projects (http://www.vt.edu/spotlight/achievement/2008-06-30_romela/2008-06-30_romela.html) include TEAM DARwIn winning RoboCup 2007, an international autonomous robot soccer competition. The group was the first and only team from the United States ever to qualify for the RoboCup humanoid division.

The group also won third place at the 2007 DARPA Urban Challenge (http://www.vt.edu/spotlight/achievement/2007-10-29_victortango/2007-10-29-victortango.html), an autonomous vehicle race in the urban environment.

Hong (http://www.me.vt.edu/people/faculty/hong.html) received his B.S. degree in mechanical engineering from the University of Wisconsin-Madison in 1994, and his master of science and Ph.D. degrees in mechanical engineering from Purdue University in 1999 and 2002, respectively.

The College of Engineering (http://www.eng.vt.edu/) at Virginia Tech is internationally recognized for its excellence in 14 engineering disciplines and computer science. The college’s 5,700 undergraduates benefit from an innovative curriculum that provides a “hands-on, minds-on” approach to engineering education, complementing classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 1,800 graduate students opportunities in advanced fields of study such as biomedical engineering, state-of-the-art microelectronics, and nanotechnology. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation and the world.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Innovative Products:

nachricht New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University
11.08.2015 | Tohoku University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>