Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equipping a construction helmet with a sensor can detect the onset of carbon monoxide poisoning

19.08.2013
Research calling for the use of a wearable computing system installed in a helmet to protect construction workers from carbon monoxide poisoning, a serious lethal threat in this industry, has garnered the Virginia Tech investigators a Best Paper Award from a prestigious scientific and engineering community.

This award will be presented at the August 17-21, 2013 Institute of Electrical and Electronic Engineers (IEEE) Conference on Automation Science and Engineering.


Jason B. Forsyth, right, of Durham, N.C., and a Ph.D. candidate in computer engineering, http://vt.academia.edu/JasonForsyth, places a wearable computing system on a helmet to protect construction workers from carbon monoxide poisoning. The work garnered the Virginia Tech researchers a Best Paper award.

Credit: Virginia Tech

Carbon monoxide poisoning is a significant problem for construction workers in both residential and industrial settings. The danger exists because the exhaust from gasoline-powered hand tools can quickly build up in enclosed spaces and easily overcome the tool's users and nearby co-workers.

In the paper, the researchers explained how they integrated a pulse oximetry sensor into a typical construction helmet to allow continuous and noninvasive monitoring of workers' blood gas saturation levels. The results of their study showed that a user of this helmet would be warned of impending carbon monoxide poisoning with a probability of greater than 99 percent.

The award-winning research and resulting paper was written by Jason B. Forsyth, of Durham, N.C., and a Ph.D. candidate in computer engineering, his adviser Thomas L. Martin, professor of electrical and computer engineering, Deborah Young-Corbett, assistant professor of civil and environmental engineering and a member of the Myers-Lawson School of Construction, and Ed Dorsa, associate professor of industrial design.

The paper, Feasibility of Intelligent Monitoring of Construction Workers for Carbon Monoxide Poisoning," can be found at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6200386. It was the focus of Forsyth's master's thesis, and Martin, Young-Corbett and Dorsa were all members of his graduate committee.

Ten Virginia Tech students participated in the study conducted on the university campus. They mimicked simple tasks of construction workers.

To show the feasibility of monitoring for carbon monoxide poisoning without subjecting the users to dangerous conditions, the researchers used a prototype for monitoring the blood oxygen saturation. The difference for monitoring for oxygen and for carbon monoxide differs only in the number of wavelengths of light employed, so if this monitoring proved feasible, then the monitoring for carbon monoxide would be feasible as well.

They selected a helmet for the installation of a wearable computer because they needed a design that could be worn year round which ruled out seasonal clothing such as overalls or coats. They also wanted a design that was socially acceptable, and one that struck a balance between comfort, usability, and feasibility.

"This helmet is only a first step toward our long-term vision of having a network of wearable and environmental sensors and intelligent personal protective gear on construction sites that will improve safety for workers," according to their report. "While this helmet targets carbon monoxide poisoning, we believe there are compelling opportunities for wearable computing in reducing injuries due to falls, electrocution, and particulate inhalation, as well as workers on foot being struck by vehicles."

Martin is a past recipient of both the Presidential Early Career Award for Scientists and Engineers and the National Science Foundation CAREER Award, both furthering his research in the design of electronic textiles and "smart" clothes.

Young-Corbett is working in a new field of engineering known as Prevention through Design or PtD. This optimal method of preventing occupational illnesses, injuries, and fatalities is to "design out" the hazards and risks; thereby, eliminating the need to control them during work operations. She is also the associate director of the Center for Innovation in Construction Safety and Health Research of the Institute of Critical Technology and Applied Science at Virginia Tech.

Dorsa has a National Science Foundation funded studio in interdisciplinary product development, working with faculty from the College of Engineering and the College of Business' Department of Marketing. In 2005, Design Intelligence chose him as one of the 40 most admired industrial design faculty in the U.S.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>