Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Design Handle To Make Lifting Car Seats Safer, Easier

30.11.2011
Engineers at North Carolina State University have developed a new handle for infant car seats (ICSs) that makes it easier for parents to lift the seat out of a car – while retaining a firmer grip on the handle – making it less likely that the seat will be dropped.

“Many products that are designed for parents don’t take ergonomics into account, and the instructions are usually not very helpful,” says Michael Clamann, a Ph.D. student at NC State and lead author of a paper describing the research. “We wanted to see whether, by changing the angle of the ICS handle, we could make it easier on parents and safer for the baby. Our idea was that it would be easier to hold on to the seat, minimizing the risk of dropping it.” The idea was inspired by Clamann’s experiences as a parent.


Citations
Applied Ergonomic
Caleb Burrus, North Carolina State University
By changing the angle of the ICS handle, the NC State team made it easier on parents and safer for infants.

The researchers based their new handle design on existing research that details which angles reduce “ulnar deviation,” or how much your wrist bends, and associated pressure in the carpal tunnel. This is important in terms of lifting tasks, because the further you bend your wrist, the weaker your grip.

The researchers tested the new design versus the traditional ICS handle with 10 different women of similar height (5th to 20th percentile in height). Participants were asked to lift the car seat out of a mock-up midsize sedan and place it into a stroller.

The team used sensors to measure muscular activity at the forearm and biceps and the wrist angle of the participants as they lifted the ICSs with different handle designs.

“Our angled handle lets people better position themselves over the car seat,” Clamann says, “and allowed them to use their biceps more than their forearm muscles. That’s an improvement, because our biceps are stronger than our forearms, and so are better able to bear weight. This is particularly important for smaller females lifting ICSs.” The participants also told researchers that the angled handle design was easier to lift.

The team also tested to see how foot placement – in the car or on the ground – affected the participants’ posture – and therefore their wrist angle. Such foot placement was previously recommended in the popular press literature regarding ICS handling.

“We found that placing your foot in the car to help lift the ICS allowed participants to use their biceps more and reduced how much they bent their wrists – giving them a firmer grip on the ICS,” says Kinley Taylor, an NC State graduate student and co-author of the paper. “However,” adds Clamann, “putting your foot in the car also increased the likelihood of hitting your head on the doorframe.”

The researchers plan to move forward with additional efforts to see how variations on the angled handle design affect ergonomics when used in different car designs, such as minivans, and for people who are significantly taller than the participants in this study.

The paper, “Comparison of infant car seat grip orientations and lift strategies,” is published online in Applied Ergonomics. The paper was co-authored by: Clamann; Taylor; Dr. David Kaber, a professor of industrial and systems engineering at NC State and director of the Occupational Safety & Ergonomics Program; and former NC State students Leah Beaver and Dr. Biwen Zhu. The research was supported, in part, by the National Institute for Occupational Safety and Health.

Dr. David Kaber, (919) 515-0312 or dbkaber@ncsu.edu
Michael Clamman, (919) 515-7210 or mpclaman@ncsu.edu
Matt Shipman, NC State News Services, (919) 515-6386 or matt_shipman@ncsu.edu

Matt Shipman | Newswise Science News
Further information:
http://www.ncsu.edu

Further reports about: Design Thinking Ergonomics ICS Occupational Seats foot placement

More articles from Innovative Products:

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>