Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Design Handle To Make Lifting Car Seats Safer, Easier

30.11.2011
Engineers at North Carolina State University have developed a new handle for infant car seats (ICSs) that makes it easier for parents to lift the seat out of a car – while retaining a firmer grip on the handle – making it less likely that the seat will be dropped.

“Many products that are designed for parents don’t take ergonomics into account, and the instructions are usually not very helpful,” says Michael Clamann, a Ph.D. student at NC State and lead author of a paper describing the research. “We wanted to see whether, by changing the angle of the ICS handle, we could make it easier on parents and safer for the baby. Our idea was that it would be easier to hold on to the seat, minimizing the risk of dropping it.” The idea was inspired by Clamann’s experiences as a parent.


Citations
Applied Ergonomic
Caleb Burrus, North Carolina State University
By changing the angle of the ICS handle, the NC State team made it easier on parents and safer for infants.

The researchers based their new handle design on existing research that details which angles reduce “ulnar deviation,” or how much your wrist bends, and associated pressure in the carpal tunnel. This is important in terms of lifting tasks, because the further you bend your wrist, the weaker your grip.

The researchers tested the new design versus the traditional ICS handle with 10 different women of similar height (5th to 20th percentile in height). Participants were asked to lift the car seat out of a mock-up midsize sedan and place it into a stroller.

The team used sensors to measure muscular activity at the forearm and biceps and the wrist angle of the participants as they lifted the ICSs with different handle designs.

“Our angled handle lets people better position themselves over the car seat,” Clamann says, “and allowed them to use their biceps more than their forearm muscles. That’s an improvement, because our biceps are stronger than our forearms, and so are better able to bear weight. This is particularly important for smaller females lifting ICSs.” The participants also told researchers that the angled handle design was easier to lift.

The team also tested to see how foot placement – in the car or on the ground – affected the participants’ posture – and therefore their wrist angle. Such foot placement was previously recommended in the popular press literature regarding ICS handling.

“We found that placing your foot in the car to help lift the ICS allowed participants to use their biceps more and reduced how much they bent their wrists – giving them a firmer grip on the ICS,” says Kinley Taylor, an NC State graduate student and co-author of the paper. “However,” adds Clamann, “putting your foot in the car also increased the likelihood of hitting your head on the doorframe.”

The researchers plan to move forward with additional efforts to see how variations on the angled handle design affect ergonomics when used in different car designs, such as minivans, and for people who are significantly taller than the participants in this study.

The paper, “Comparison of infant car seat grip orientations and lift strategies,” is published online in Applied Ergonomics. The paper was co-authored by: Clamann; Taylor; Dr. David Kaber, a professor of industrial and systems engineering at NC State and director of the Occupational Safety & Ergonomics Program; and former NC State students Leah Beaver and Dr. Biwen Zhu. The research was supported, in part, by the National Institute for Occupational Safety and Health.

Dr. David Kaber, (919) 515-0312 or dbkaber@ncsu.edu
Michael Clamman, (919) 515-7210 or mpclaman@ncsu.edu
Matt Shipman, NC State News Services, (919) 515-6386 or matt_shipman@ncsu.edu

Matt Shipman | Newswise Science News
Further information:
http://www.ncsu.edu

Further reports about: Design Thinking Ergonomics ICS Occupational Seats foot placement

More articles from Innovative Products:

nachricht Healthy Hiking in Smart Socks
22.02.2017 | Technische Universität Chemnitz

nachricht A shampoo bottle that empties completely -- every last drop
27.06.2016 | Ohio State University

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>