Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airbags for ships save lives, environment and cargo

24.06.2014

Innovative rapidly inflating balloon technology could keep damaged ships afloat. But more fine-tuning needs to be done and there are some concerns about reliability.

When a ship runs aground, or two vessels crash into each other, the damaged one may lose its stability, or worse, sink. But imagine if after a ship accident, balloons popped up like car airbags to keep the disabled vessel upright and afloat.


by Hanns-J. Neubert

Image credits to: Corey Seeman

This would help to avoid pollution of seas and beaches and gain valuable time for evacuation. Now, the EU-funded project SuSy, completed in 2013, have turned such an idea into a proof of concept. The project developed a proposal to install inflatables on ships including a system to blow them up vary rapidly.

The proof of concept culminated in 2013 with a demonstration of the idea on a model bottom of a medium-sized tanker in the port of Chalkida, in Greece. “Our challenge was to produce enormous amounts of gas from small cartridges which is quickly released into inflatables,” describes project partner Reinhard Ahlers, managing director of Balance, a maritime consultancy in Bremen, Germany.

The technologies used by the project are not new, but the combination is. Kevlar reinforced balloons can be installed anywhere on a ship. Suitable places to install the balloons would be in between double hulls and in ballast water tanks. The gadgets needed to inflate them are taken from submarine rescue systems, based on rapid blow out devices originally developed for satellite launchers.

However, one expert voices concern at the project’s approach. “Given the location of balloons in the double hull, not only will the construction of the ship be much more difficult and costly. But inspection and maintenance will be almost impossible – hence these systems will be unreliable,” says Egbert Ypma, researcher at the Maritime Research Institute Netherlands in Wageningen, in the Netherlands.

To ensure that prompt inflation, the project devised cartridges attached to balloons holding potassium nitrate, used in gunpowder, an epoxy resin and ferric oxide commonly known as rust. When initiated, the gunpowder oxidises the epoxy resin which puffs into the balloons inflating them.

What is more, rust improves the explosion process. But blasts produce heat, which may harm the plastic skin of the balloons or inflammable cargo. Therefore ambient cool air is mixed into the chemical explosion process. This comes either from a second cartridge containing compressed air. Or by using a heat exchanger device just before the gas enters the balloon.

In addition to solving the inflation problem, further fine-tuning needs to be done, according to project scientists. “For example, it would be desirable to have controls at the gas exhaust, as we do not always need the entire outflow,” Ahlers tells CommNet. The German rocket technology company Astrium in Bremen, Germany, now part of Airbus Defence and Space, continues to look for a solution.

Whereas Survitec, a specialist in marine, defence and aerospace survival technology with its headquarters in Dunmurry near Belfast, UK,  who bought the original project partner Deutsche Schlauchboot in Eschershausen, Germany, will optimise the inflatable material of the balloons. Thus, there is still some way to go. “None of the partners assume that the system will be bought immediately,” says Ahlers.

One expert believes the system is worth investigating further. “I think that the idea to have a balloon in the ballast tanks in order to push out the water, or try to reduce a damage opening due to those in between a double hull, will be one step forward to enhance maritime safety,” concludes Jonas Ringsberg, professor in marine structures and head of the Division of Marine Design at Chalmers University of Technology in Gothenburg, Sweden.  

http://www.youris.com

Silvia Raimondi | AlphaGalileo

Further reports about: Germany Netherlands airbag balloon Technology maritime satellite

More articles from Innovative Products:

nachricht New Video Camera Released Featuring Ultra-High-Speed CMOS Image Sensor Developed At Tohoku University
11.08.2015 | Tohoku University

nachricht Safe motorcycle helmets – made of carrot fibers?
06.08.2015 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>