Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ZigBee in the Sky

26.08.2014

A team of engineers from Singapore has successfully piloted the world's first ZigBee wireless sensor network (WSN) for satellite communications.

With the weight of payloads being a major constraint in satellite design, constructing a lightweight, low power-consuming, wireless communication system to do away with cabling inside the satellite has always been a challenge for system designers.



The engineering team at the Satellite Research Centre of Nanyang Technological University in Singapore launched VELOX-I, which consists of a nanosatellite weighing 3.5 kg and a piggyback picosatellite weighing 1.5 kg, from the two highest points on campus.

Designed to test the hypothesis that ZigBee, a cheap but powerful land-based wireless system, will perform equally well in space, both miniature satellites were configured with a ZigBee wireless network and equipped with small sensor nodes. These nodes perform functions such as local sensing, distributed computing and data-gathering within the satellite to support intra-satellite communications.

The satellites were found to be able to maintain inter-satellite communications with each other over remarkably long distances.

This experiment marks a breakthrough in aeronautical engineering, having been designed to evaluate the performance of WSNs in space. After conducting Received Signal Strength Indicator tests on the satellites' radio frequency modules, a maximum range of 1 km was found to be achievable for inter-satellite communication in the campus environment. An even longer communication range can be expected in free space, due to the absence of signal attenuation caused by fading and diffraction.

To estimate the range of inter-satellite communication in free space, the team applied a link budget analysis based on the Friis transmission equation, deriving an average theoretical distance of 4.186 km and a maximum of 15.552 km. Published in the special issue of Unmanned Systems, these findings present a compelling case for further studies into inter-satellite communication systems with more complex designs.

The team also found that by replacing internally wired connections with wireless links, a satellite's mass could be reduced by as much as 10%. With the twin pressures of minimising development costs and maximising risk diversification imposing major constraints on satellite design, the production of comprehensive yet lightweight systems could benefit significantly from WSNs.

Although WSNs have been used in a wide range of applications in recent years, their use in space applications has, until now, remained limited. The Singaporean team's data-driven survey has established a sound platform for future formation-flying satellite missions, and seems poised to create subsequent revolutions in space.

Their report appears in Unmanned Systems' special issue on wireless sensor networks and applications.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research and professional communities. The company publishes about 500 books annually and more than 120 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.

Media Contact:
Jason Lim Chongjin
Senior Marketing/Corporate Communications Executive
Tel: (65) 64665775, Ext. 247
Email: cjlim@wspc.com.sg

Jason Lim Chongjin | Eurek Alert!
Further information:
http://www.worldscientific.com/page/pressroom/2014-08-26-01

Further reports about: Communications VELOX-I satellite wireless communication system

More articles from Information Technology:

nachricht New movie screen allows for glasses-free 3-D
26.07.2016 | Massachusetts Institute of Technology, CSAIL

nachricht Hey robot, shimmy like a centipede
22.07.2016 | Kyoto University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>