Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ZigBee in the Sky

26.08.2014

A team of engineers from Singapore has successfully piloted the world's first ZigBee wireless sensor network (WSN) for satellite communications.

With the weight of payloads being a major constraint in satellite design, constructing a lightweight, low power-consuming, wireless communication system to do away with cabling inside the satellite has always been a challenge for system designers.



The engineering team at the Satellite Research Centre of Nanyang Technological University in Singapore launched VELOX-I, which consists of a nanosatellite weighing 3.5 kg and a piggyback picosatellite weighing 1.5 kg, from the two highest points on campus.

Designed to test the hypothesis that ZigBee, a cheap but powerful land-based wireless system, will perform equally well in space, both miniature satellites were configured with a ZigBee wireless network and equipped with small sensor nodes. These nodes perform functions such as local sensing, distributed computing and data-gathering within the satellite to support intra-satellite communications.

The satellites were found to be able to maintain inter-satellite communications with each other over remarkably long distances.

This experiment marks a breakthrough in aeronautical engineering, having been designed to evaluate the performance of WSNs in space. After conducting Received Signal Strength Indicator tests on the satellites' radio frequency modules, a maximum range of 1 km was found to be achievable for inter-satellite communication in the campus environment. An even longer communication range can be expected in free space, due to the absence of signal attenuation caused by fading and diffraction.

To estimate the range of inter-satellite communication in free space, the team applied a link budget analysis based on the Friis transmission equation, deriving an average theoretical distance of 4.186 km and a maximum of 15.552 km. Published in the special issue of Unmanned Systems, these findings present a compelling case for further studies into inter-satellite communication systems with more complex designs.

The team also found that by replacing internally wired connections with wireless links, a satellite's mass could be reduced by as much as 10%. With the twin pressures of minimising development costs and maximising risk diversification imposing major constraints on satellite design, the production of comprehensive yet lightweight systems could benefit significantly from WSNs.

Although WSNs have been used in a wide range of applications in recent years, their use in space applications has, until now, remained limited. The Singaporean team's data-driven survey has established a sound platform for future formation-flying satellite missions, and seems poised to create subsequent revolutions in space.

Their report appears in Unmanned Systems' special issue on wireless sensor networks and applications.

About World Scientific Publishing Co.

World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research and professional communities. The company publishes about 500 books annually and more than 120 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.

Media Contact:
Jason Lim Chongjin
Senior Marketing/Corporate Communications Executive
Tel: (65) 64665775, Ext. 247
Email: cjlim@wspc.com.sg

Jason Lim Chongjin | Eurek Alert!
Further information:
http://www.worldscientific.com/page/pressroom/2014-08-26-01

Further reports about: Communications VELOX-I satellite wireless communication system

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>