Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on Wi-Fi 'dead zones'

26.09.2008
Award-winning technique inexpensively finds gaps in wireless networks

Rooting out Wi-Fi "dead zones" in large wireless networks that cover whole neighborhoods or cities is an expensive proposition. Pre-deployment testing is so costly that most WiFi providers simply build their networks first and fill in the gaps later. But even that isn't easy, due to the paucity of inexpensive techniques for mapping out precisely which areas lack coverage.

Now, thanks to an award-winning technique developed at Rice University and Hewlett-Packard Laboratories (HP Labs), Wi-Fi architects can test and refine their layouts using readily available information. The research, which won best-paper honors last week at the annual MobiCom '08 wireless conference in San Francisco, promises to make it cheaper and easier to get proper wireless coverage.

"In the real world there are many things than can interfere with signals and limit coverage," said lead researcher Edward Knightly, professor in electrical and computer engineering at Rice. "Our goal was to efficiently characterize the performance of urban-scale deployments, and our techniques can be used to either guide network deployment or to assess whether a deployed network meets its performance requirements."

The new technique uses a small number of measurements to predict how well a wireless transmitter will cover a particular portion of a neighborhood. The only information required is basic topography, street locations and general information about land use.

Knightly and research collaborators Ram Swaminathan, senior research scientist at HP Labs, and Joshua Robinson, Rice graduate student, demonstrated their new method on two high-profile networks -- Google's system in Mountain View, Calif., and TFA-Wireless, an experimental network designed and built by Rice and owned and operated by Houston-based nonprofit Technology For All. TFA-Wireless provides high-speed Internet access to more than 4,000 users in a working-class neighborhood in east Houston.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>