Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's thinnest hologram paves path to new 3-D world

18.05.2017

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday electronics like smart phones, computers and TVs.


An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3-D holography into everyday electronics like smart phones, computers and TVs.

Interactive 3-D holograms are a staple of science fiction -- from Star Wars to Avatar -- but the challenge for scientists trying to turn them into reality is developing holograms that are thin enough to work with modern electronics.

Now a pioneering team led by RMIT University's Distinguished Professor Min Gu has designed a nano-hologram that is simple to make, can be seen without 3D goggles and is 1,000 times thinner than a human hair.

Credit: RMIT University

Interactive 3D holograms are a staple of science fiction - from Star Wars to Avatar - but the challenge for scientists trying to turn them into reality is developing holograms that are thin enough to work with modern electronics.

Now a pioneering team led by RMIT University's Distinguished Professor Min Gu has designed a nano-hologram that is simple to make, can be seen without 3D goggles and is 1000 times thinner than a human hair.

Watch and embed the video: http://bit.ly/thinnesthologram

"Conventional computer-generated holograms are too big for electronic devices but our ultrathin hologram overcomes those size barriers," Gu said.

"Our nano-hologram is also fabricated using a simple and fast direct laser writing system, which makes our design suitable for large-scale uses and mass manufacture.

"Integrating holography into everyday electronics would make screen size irrelevant - a pop-up 3D hologram can display a wealth of data that doesn't neatly fit on a phone or watch.

"From medical diagnostics to education, data storage, defence and cyber security, 3D holography has the potential to transform a range of industries and this research brings that revolution one critical step closer."

Conventional holograms modulate the phase of light to give the illusion of three-dimensional depth. But to generate enough phase shifts, those holograms need to be at the thickness of optical wavelengths.

The RMIT research team, working with the Beijing Institute of Technology (BIT), has broken this thickness limit with a 25 nanometre hologram based on a topological insulator material - a novel quantum material that holds the low refractive index in the surface layer but the ultrahigh refractive index in the bulk.

The topological insulator thin film acts as an intrinsic optical resonant cavity, which can enhance the phase shifts for holographic imaging.

Dr Zengyi Yue, who co-authored the paper with BIT's Gaolei Xue, said: "The next stage for this research will be developing a rigid thin film that could be laid onto an LCD screen to enable 3D holographic display.

"This involves shrinking our nano-hologram's pixel size, making it at least 10 times smaller.

"But beyond that, we are looking to create flexible and elastic thin films that could be used on a whole range of surfaces, opening up the horizons of holographic applications."

The research is published in the journal Nature Communications (DOI 10.1038/NCOMMS15354) on 18 May.

Media Contact

Min Gu
min.gu@rmit.edu.au
61-399-252-128

 @RMIT

http://www.rmit.edu.au 

Min Gu | EurekAlert!

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>