Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record in 3d-imaging of porous rocks

19.10.2011
A stack of 35 million megapixel-photos

A team of physicists headed by Prof. Rudolf Hilfer at the Institute for Computational Physics (ICP) of the University Stuttgart has established a world record in the field of three-dimensional imaging of porous materials.

The scientists have generated the largest and most precise three-dimensional image of the pore structure of sandstone. The image was generated within a project of the Simulation Technology Cluster of Excellence, and contains more than 35 trillion (a number with thirteen digits) voxels.

It allows now to study the relation between microstructure and physical properties of porous rocks with unprecedented accuracy. Sandstones and porous rocks are of paramount importance for applications such as enhanced oil recovery, carbon dioxide sequestration or groundwater management.

In three-dimensional imaging one discretizes spatial structures similar to digital photographs. Three-dimensional image elements are called voxels – analogous to pixels for two-dimensional digital photos. The three-dimensional ICP-images systematically resolve the microstructure of a cubic sample of Fontainebleau sandstone over three decades from submillimeter to submicron scales.

The microstructure of sandstones is important for the hydraulic properties of many oil reservoirs and thus for efficient production of hydrocarbons. The largest three-dimensional image, that the physicists around Prof. Hilfer have generated, contains 32768 cubed, or 35184372088832, voxels.

For comparison: Medical magnetic resonance images of the human contain roughly 720 million voxel. Even state of the art 3d-images in science and engineering contain only up to 20 billion voxels. Expressed in digital photos a medical image thus corresponds to only 72 photos. The largest ICP-image, however, with 35 trilion voxels amounts to a stack of 35 million such digital photographs.

"This world record is important for the physics of porous materials, because it allows for the first time to investigate extremely complex microstructures as a function of resolution", says Hilfer. The microstructure of a porous material determines its elastic, plastic, mechanical, electrical, magnetic, thermal, rheological and hydraulic properties. Inversely, physicists can infer information about the microstructure from measuring such physical properties.

Until now it was not possible to image a sample of several centimetres with a resolution of several hundred nanometres. "To achieve this size and accuracy would require several years of beam time at a particle accelerator such as the European Synchrotron Radiation Facility in Grenoble." explains Hilfer. His team has therefore chosen a different approach. Firstly, the scientists developed theories and methods that allow to compare and to calibrate microstructures. Then they invented algorithms and data structures that allow generating computer models of sufficient size and accuracy. These models were finally digitized and carefully calibrated against real rock samples.

For further information contact Prof. Rudolf Hilfer, Institute for Computational Physics, phone: +49 (0) 711 685-67607, e-mail: hilfer@icp.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>