Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record in 3d-imaging of porous rocks

19.10.2011
A stack of 35 million megapixel-photos

A team of physicists headed by Prof. Rudolf Hilfer at the Institute for Computational Physics (ICP) of the University Stuttgart has established a world record in the field of three-dimensional imaging of porous materials.

The scientists have generated the largest and most precise three-dimensional image of the pore structure of sandstone. The image was generated within a project of the Simulation Technology Cluster of Excellence, and contains more than 35 trillion (a number with thirteen digits) voxels.

It allows now to study the relation between microstructure and physical properties of porous rocks with unprecedented accuracy. Sandstones and porous rocks are of paramount importance for applications such as enhanced oil recovery, carbon dioxide sequestration or groundwater management.

In three-dimensional imaging one discretizes spatial structures similar to digital photographs. Three-dimensional image elements are called voxels – analogous to pixels for two-dimensional digital photos. The three-dimensional ICP-images systematically resolve the microstructure of a cubic sample of Fontainebleau sandstone over three decades from submillimeter to submicron scales.

The microstructure of sandstones is important for the hydraulic properties of many oil reservoirs and thus for efficient production of hydrocarbons. The largest three-dimensional image, that the physicists around Prof. Hilfer have generated, contains 32768 cubed, or 35184372088832, voxels.

For comparison: Medical magnetic resonance images of the human contain roughly 720 million voxel. Even state of the art 3d-images in science and engineering contain only up to 20 billion voxels. Expressed in digital photos a medical image thus corresponds to only 72 photos. The largest ICP-image, however, with 35 trilion voxels amounts to a stack of 35 million such digital photographs.

"This world record is important for the physics of porous materials, because it allows for the first time to investigate extremely complex microstructures as a function of resolution", says Hilfer. The microstructure of a porous material determines its elastic, plastic, mechanical, electrical, magnetic, thermal, rheological and hydraulic properties. Inversely, physicists can infer information about the microstructure from measuring such physical properties.

Until now it was not possible to image a sample of several centimetres with a resolution of several hundred nanometres. "To achieve this size and accuracy would require several years of beam time at a particle accelerator such as the European Synchrotron Radiation Facility in Grenoble." explains Hilfer. His team has therefore chosen a different approach. Firstly, the scientists developed theories and methods that allow to compare and to calibrate microstructures. Then they invented algorithms and data structures that allow generating computer models of sufficient size and accuracy. These models were finally digitized and carefully calibrated against real rock samples.

For further information contact Prof. Rudolf Hilfer, Institute for Computational Physics, phone: +49 (0) 711 685-67607, e-mail: hilfer@icp.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Smarter robot vacuum cleaners for automated office cleaning
15.08.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Researchers 3-D print first truly microfluidic 'lab on a chipl devices
15.08.2017 | Brigham Young University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>