Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first: 'Storing lightning inside thunder'

18.09.2017

University of Sydney researchers are turning optical data into readable soundwaves

  • World-first transfer of light to acoustic information on a chip
  • Acoustic buffer parks photonic information in a sound wave for later retrieval
  • Hybrid chips useful in telecommunications networks and cloud computing

Stylised explanation of how the chip works. 1. Photonic (light) data pulse (yellow) enters from the left. 2. A 'write pulse' (blue) enters from the right 3. The data and write pulses interact in the chip, producing an acoustic wave, storing the data and allowing for processing, retrieval and further transmission. 4. Another photonic read pulse (blue) enters the chip, accessing the acoustic data and transmitting the data as photonic information (yellow) to the right side of the microchip. 5. Light passes through the chip in two to three nanoseconds, depending on the length of the spiral on the chip. Information can be held on the chip for an extra 10 nanoseconds as acoustic data.

Credit: Rhys Holland & Sebastian Zentilomo/University of Sydney

Usage Restrictions: Used only for this story

Researchers at the University of Sydney have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchip.

It is the first time this has been achieved.

Transferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centres where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

"The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain," said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

"It is like the difference between thunder and lightning," she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light waves.

Light is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

To help solve these problems, lead authors Moritz Merklein and Dr Stiller, both from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) have now demonstrated a memory for digital information that coherently transfers between light and sound waves on a photonic microchip.

The chip was fabricated at the Australian National University's Laser Physics Centre, also part of the CUDOS Centre of Excellence.

Their research is published on Monday in Nature Communications.

IMPROVED CONTROL

University of Sydney doctoral candidate Mr Merklein said: "Building an acoustic buffer inside a chip improves our ability to control information by several orders of magnitude."

Dr Stiller said: "Our system is not limited to a narrow bandwidth. So unlike previous systems this allows us to store and retrieve information at multiple wavelengths simultaneously, vastly increasing the efficiency of the device."

Fibre optics and the associated photonic information - data delivered by light - have huge advantages over electronic information: bandwidth is increased, data travels at the speed of light and there is no heat associated with electronic resistance. Photons, unlike electrons, are also immune to interference from electromagnetic radiation.

However, the advantages of light-speed data have their own in-built problem: you need to slow things down on a computer chip so that you can do something useful with the information.

In traditional microchips this is done using electronics. But as computers and telecommunication systems become bigger and faster, the associated heat is making some systems unmanageable. The use of photonic chips - bypassing electronics - is one solution to this problem being pursued by large companies such as IBM and Intel.

Mr Merklein said: "For this to become a commercial reality, photonic data on the chip needs to be slowed down so that they can be processed, routed, stored and accessed."

CUDOS director, ARC Laureate Fellow and co-author, Professor Benjamin Eggleton, said: "This is an important step forward in the field of optical information processing as this concept fulfils all requirements for current and future generation optical communication systems."

###

For media comment contact:

Professor Ben Eggleton +61 448 931 701 benjamin.eggleton@sydney.edu.au

Mr Moritz Merklein +61 2 9351 3604 moritz.merklein@sydney.edu.au

Dr Birgit Stiller +61 2 8627 5253 birgit.stiller@sydney.edu.au

The Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) is an Australian Research Council Centre of Excellence, headquartered at the University of Sydney, and a research consortium between six Australian universities throughout NSW, the ACT and Victoria. The work is supported by Professor Eggleton's ARC Laureate Fellowship.

Marcus Strom | EurekAlert!

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>