Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first: 'Storing lightning inside thunder'

18.09.2017

University of Sydney researchers are turning optical data into readable soundwaves

  • World-first transfer of light to acoustic information on a chip
  • Acoustic buffer parks photonic information in a sound wave for later retrieval
  • Hybrid chips useful in telecommunications networks and cloud computing

Stylised explanation of how the chip works. 1. Photonic (light) data pulse (yellow) enters from the left. 2. A 'write pulse' (blue) enters from the right 3. The data and write pulses interact in the chip, producing an acoustic wave, storing the data and allowing for processing, retrieval and further transmission. 4. Another photonic read pulse (blue) enters the chip, accessing the acoustic data and transmitting the data as photonic information (yellow) to the right side of the microchip. 5. Light passes through the chip in two to three nanoseconds, depending on the length of the spiral on the chip. Information can be held on the chip for an extra 10 nanoseconds as acoustic data.

Credit: Rhys Holland & Sebastian Zentilomo/University of Sydney

Usage Restrictions: Used only for this story

Researchers at the University of Sydney have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchip.

It is the first time this has been achieved.

Transferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centres where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

"The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain," said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

"It is like the difference between thunder and lightning," she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light waves.

Light is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

To help solve these problems, lead authors Moritz Merklein and Dr Stiller, both from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) have now demonstrated a memory for digital information that coherently transfers between light and sound waves on a photonic microchip.

The chip was fabricated at the Australian National University's Laser Physics Centre, also part of the CUDOS Centre of Excellence.

Their research is published on Monday in Nature Communications.

IMPROVED CONTROL

University of Sydney doctoral candidate Mr Merklein said: "Building an acoustic buffer inside a chip improves our ability to control information by several orders of magnitude."

Dr Stiller said: "Our system is not limited to a narrow bandwidth. So unlike previous systems this allows us to store and retrieve information at multiple wavelengths simultaneously, vastly increasing the efficiency of the device."

Fibre optics and the associated photonic information - data delivered by light - have huge advantages over electronic information: bandwidth is increased, data travels at the speed of light and there is no heat associated with electronic resistance. Photons, unlike electrons, are also immune to interference from electromagnetic radiation.

However, the advantages of light-speed data have their own in-built problem: you need to slow things down on a computer chip so that you can do something useful with the information.

In traditional microchips this is done using electronics. But as computers and telecommunication systems become bigger and faster, the associated heat is making some systems unmanageable. The use of photonic chips - bypassing electronics - is one solution to this problem being pursued by large companies such as IBM and Intel.

Mr Merklein said: "For this to become a commercial reality, photonic data on the chip needs to be slowed down so that they can be processed, routed, stored and accessed."

CUDOS director, ARC Laureate Fellow and co-author, Professor Benjamin Eggleton, said: "This is an important step forward in the field of optical information processing as this concept fulfils all requirements for current and future generation optical communication systems."

###

For media comment contact:

Professor Ben Eggleton +61 448 931 701 benjamin.eggleton@sydney.edu.au

Mr Moritz Merklein +61 2 9351 3604 moritz.merklein@sydney.edu.au

Dr Birgit Stiller +61 2 8627 5253 birgit.stiller@sydney.edu.au

The Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) is an Australian Research Council Centre of Excellence, headquartered at the University of Sydney, and a research consortium between six Australian universities throughout NSW, the ACT and Victoria. The work is supported by Professor Eggleton's ARC Laureate Fellowship.

Marcus Strom | EurekAlert!

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New ID pictures of conducting polymers discover a surprise ABBA fan

18.06.2018 | Life Sciences

The car of the future – sleeper cars and travelling offices too?

18.06.2018 | Automotive Engineering

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>