Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless at WARP speed

02.02.2009
Industry titans race to Rice's new open-access platform

Nothing kills innovation like having to reinvent the wheel. Imagine how dull your diet would be if you had to build a new stove and hammer out a few cooking pots every time you wanted to test a new recipe. Until just a couple of years ago, electronics researchers testing new high-speed wireless technologies faced just this sort of problem; they had to build every test system completely from scratch.

"It was incredibly frustrating," said Ashutosh Sabharwal, director of Rice University's Center for Multimedia Communication (CMC). So, CMC set out to change that in 2006 by creating a turnkey, open-source platform -- the stove, pots and kitchen utensils, if you will -- that would let wireless researchers expand their tech menus.

In just two short years, the platform -- dubbed WARP -- has whetted the appetites of heavyweights like Nokia, MIT, Toyota, NASA and Ericsson, and it's already being used to test everything from low-cost wireless Internet in rural India to futuristic "unwired" spacecraft.

Sabharwal, the lead investigator on the federally funded WARP project, said he and his CMC colleagues were among the lucky few in academia who could afford the high cost of entry into wireless research in 2006.

"Collectively, it was a big waste of time and effort, and there were a lot of people who simply couldn't afford to play," Sabharwal said. "Some of our previous research hinted at the possibilities of an open-access platform, so we had a clear goal when we made our proposal to the National Science Foundation."

WARP stands for "wireless open-access research platform," and physically, WARP looks like something from the guts of a desktop computer. It's a collection of boards containing a powerful processor and all the transmitters and other gadgets needed for high-end wireless communications. What makes WARP boards so effective is their flexibility. When researchers need to test several kinds of radio transmitters, wireless routers and network access points, all they need to do is write a few programs that allow the WARP board to become each of those devices.

The concept is already starting to pay off. Sabharwal said Motorola is using the system to test an entirely new low-cost architecture for wireless Internet in rural India. It's the sort of low-profit-margin project that probably wouldn't have gotten beyond the drawing board if not for WARP, he said. Another early adopter, NASA, is using WARP to look for ways to save weight, cost and complexity in the wiring systems for future spacecraft.

At Rice, CMC staffer Patrick Murphy -- the former CMC doctoral student who developed the original WARP architecture – is collaborating with graduate students to use WARP in proof-of-concept technologies for "cognitive wireless." The cognitive wireless concept stems from the fact that up to half of the nation's finite wireless spectrum is unused at any given time. Sabharwal said researchers have talked for years about designing smart, "cognitive" networks that can shift frequencies on the fly, opening up vast, unused amounts of spectrum for consumer use.

"WARP provides an entry point for people to test new ideas about cognitive wireless, and our students are answering the fundamental questions: how much spectrum can really be reused without hurting current sporadically used services and more importantly, build practical proof-of-concept prototypes?" Sabharwal said.

Making WARP a reality wasn't easy. Students and staffers from the research groups of Sabharwal and CMC faculty members Ed Knightly, Lin Zhong, Joseph Cavallaro and Behnaam Aazhang designed the WARP hardware and built all the back-end systems, tools and software that allow the various components of WARP to work together.

With so many hands on deck, CMC was able get a version of WARP ready to release to the research community within a year of getting its initial NSF funding. After this early success, Sabharwal spent a few frustrating months trying to find a company to manufacture WARP boards.

"Our philosophy from the beginning had been to drive the cost lower and lower, to sell the boards for as little as possible in order to get them out there," Sabharwal said. "Everyone we contacted seemed to want just the opposite, to mark them up as much as possible and sell to the few people that could afford high prices."

With CMC researchers touting their work at conferences and workshops, colleagues around the world were clamoring for boards. Sabharwal said CMC began producing a few, even as it was seeking a production deal with an established company. The lab wound up selling equipment to about 40 university and corporate research groups before WARP architect Murphy -- now a CMC project manager -- founded Houston-based Mango Communications in mid-2008 to take over production of the boards.

Sabharwal said CMC has NSF funding through 2010 to further develop WARP, and they're putting the final touches on a new set of tools that will allow researchers to control the boards from any location remotely. That will allow them to fulfill one of CMC's longstanding goals of installing the flexible boards into existing test networks like the CMC-built high-speed network that nonprofit Technology For All operates for more than 4,000 users in Houston's East End neighborhood.

Sabharwal said CMC is just beginning to hear back from colleagues about how they are using WARP.

He said several large wireless companies are using WARP to test schemes for wireless phone networks that can transfer data up to 100 times faster than current 3G networks. He said Toyota is using WARP to test car-to-car communications -- systems that automotive engineers hope to use in the future for collision avoidance, traffic management and more. In another case, Sabharwal said he was surprised to learn the some users were partially disassembling the boards to add new functions. It was still cheaper than starting from scratch, so it made sense, but it wasn't something CMC had expected.

"When you put a new technology into people's hands, they'll inevitably find innovative ways to use it," Sabharwal said. "That's one of the best things about WARP. It is going to lead to innovations that we could never have anticipated."

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>