Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless sensors learn from life

28.08.2008
European and Indian researchers are applying principles learned from living organisms to design self-organising networks of wireless sensors suitable for a wide range of environmental monitoring purposes.

Monsoon rains in the Indian state of Kerala often bring increased risk of landslides. What can be done to warn nearby communities that a landslide is imminent?

One answer is to use a wireless sensor network to monitor geological conditions. Wireless sensors are becoming popular because the sensor nodes are small, simple and cheap and require no cabling to connect them together and to the control centre. They can be used for numerous purposes and are well suited to environmental monitoring.

There are downsides, though. Sensors and communication links can fail, and the nodes rely on battery power. Large networks can become congested with many sensors reporting at the same time to the same control centre.

However, what matters is not so much the reliability of the individual sensors but the reliability of the network as a whole. Does this system reliably monitor air pollution in the city centre? Does that system reliability measure weather conditions on the motorway bridge?

Biological analogy

These are the kinds of problems being tackled by WINSOC, an EU-funded project to find new ways of organising wireless sensor networks to make them robust against node failures and capable of being implemented on large scales.

What makes WINSOC different from earlier projects is that it has taken its cue from biological systems. Where sensor networks are made up of many individual sensors, living organisms are made up from many individual cells.

“Living systems are intrinsically robust against cells dying or being damaged,” says Sergio Barbarossa of the University of Rome 'La Sapienza', who is the scientific coordinator of WINSOC. “The behaviour of most organs is an emerging feature, resulting from the interaction of many cells, where no cell is particularly robust or even aware of the whole behaviour.”

A striking example is the rhythm of the heart, which is controlled by the interaction of several pacemaker cells, each of which can be seen as a pulse oscillator. Even though individual oscillators are not particularly stable or reliable, the heart as a whole is extremely stable and can readily adapt to changing conditions.

Self-organisation

“The starting point in WINSOC was to provide mathematical models of biological systems and translate them into algorithms to determine how the sensor nodes should interact with each other,” says Barbarossa.

A prototype sensor node is being developed, but the challenge is to make the network able to continue to function even when several sensors fail.

The answer is self-organisation. In the WINSOC approach, sensor nodes communicate with their neighbours to arrive at a consensus on what has been sensed. The network then finds the best path through the available nodes to relay this information to the control centre.

This biological principle is being tested in the landslide detection system. A prototype network of geological sensors has been installed in the Idduki rainforest of Kerala, India, a region vulnerable to landslides in the monsoon season.

“Our Indian partners have buried sensors in the terrain, with the capability of monitoring the humidity and porosity of the terrain and the acceleration forces,” Barbarossa says. “The sensors are then linked to a satellite which gathers the data and conveys them to the control centre.” The network includes 12 geological sensors connected to 15 wireless sensor nodes spread over three hectares.

Forest fires

In a second demonstration, the team has implemented a computer simulator that emulates the spread of a fire through a forest. The simulator also mimics a sensor network designed to monitor and alert of forest fires. Sensors have been placed in a forest in the Czech Republic to detect and locate sources of heat and smoke.

The consortium is also developing a ‘Sensor Web’ to allow applications and services to access sensors of all types over the internet. This is a distributed sensing system in which information is globally shared and used by all networked platforms.

In the long term, the group expects two kinds of benefits to emerge from the project. “The first is related to the monitoring of the Earth with a system capable of autonomous decisions,” says Barbarossa. “This is particularly important in remote areas where it is difficult to recharge batteries or replace defective nodes.”

A second major goal is progress in the design of self-organising systems. “We believe that cross-fertilisation of ideas from biology to engineering and vice versa can provide substantial benefits to both areas.”

WINSOC is funded by the EU’s Sixth Framework Programme for research and is due to finish in February 2009.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89979

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>