Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless sensors learn from life

28.08.2008
European and Indian researchers are applying principles learned from living organisms to design self-organising networks of wireless sensors suitable for a wide range of environmental monitoring purposes.

Monsoon rains in the Indian state of Kerala often bring increased risk of landslides. What can be done to warn nearby communities that a landslide is imminent?

One answer is to use a wireless sensor network to monitor geological conditions. Wireless sensors are becoming popular because the sensor nodes are small, simple and cheap and require no cabling to connect them together and to the control centre. They can be used for numerous purposes and are well suited to environmental monitoring.

There are downsides, though. Sensors and communication links can fail, and the nodes rely on battery power. Large networks can become congested with many sensors reporting at the same time to the same control centre.

However, what matters is not so much the reliability of the individual sensors but the reliability of the network as a whole. Does this system reliably monitor air pollution in the city centre? Does that system reliability measure weather conditions on the motorway bridge?

Biological analogy

These are the kinds of problems being tackled by WINSOC, an EU-funded project to find new ways of organising wireless sensor networks to make them robust against node failures and capable of being implemented on large scales.

What makes WINSOC different from earlier projects is that it has taken its cue from biological systems. Where sensor networks are made up of many individual sensors, living organisms are made up from many individual cells.

“Living systems are intrinsically robust against cells dying or being damaged,” says Sergio Barbarossa of the University of Rome 'La Sapienza', who is the scientific coordinator of WINSOC. “The behaviour of most organs is an emerging feature, resulting from the interaction of many cells, where no cell is particularly robust or even aware of the whole behaviour.”

A striking example is the rhythm of the heart, which is controlled by the interaction of several pacemaker cells, each of which can be seen as a pulse oscillator. Even though individual oscillators are not particularly stable or reliable, the heart as a whole is extremely stable and can readily adapt to changing conditions.

Self-organisation

“The starting point in WINSOC was to provide mathematical models of biological systems and translate them into algorithms to determine how the sensor nodes should interact with each other,” says Barbarossa.

A prototype sensor node is being developed, but the challenge is to make the network able to continue to function even when several sensors fail.

The answer is self-organisation. In the WINSOC approach, sensor nodes communicate with their neighbours to arrive at a consensus on what has been sensed. The network then finds the best path through the available nodes to relay this information to the control centre.

This biological principle is being tested in the landslide detection system. A prototype network of geological sensors has been installed in the Idduki rainforest of Kerala, India, a region vulnerable to landslides in the monsoon season.

“Our Indian partners have buried sensors in the terrain, with the capability of monitoring the humidity and porosity of the terrain and the acceleration forces,” Barbarossa says. “The sensors are then linked to a satellite which gathers the data and conveys them to the control centre.” The network includes 12 geological sensors connected to 15 wireless sensor nodes spread over three hectares.

Forest fires

In a second demonstration, the team has implemented a computer simulator that emulates the spread of a fire through a forest. The simulator also mimics a sensor network designed to monitor and alert of forest fires. Sensors have been placed in a forest in the Czech Republic to detect and locate sources of heat and smoke.

The consortium is also developing a ‘Sensor Web’ to allow applications and services to access sensors of all types over the internet. This is a distributed sensing system in which information is globally shared and used by all networked platforms.

In the long term, the group expects two kinds of benefits to emerge from the project. “The first is related to the monitoring of the Earth with a system capable of autonomous decisions,” says Barbarossa. “This is particularly important in remote areas where it is difficult to recharge batteries or replace defective nodes.”

A second major goal is progress in the design of self-organising systems. “We believe that cross-fertilisation of ideas from biology to engineering and vice versa can provide substantial benefits to both areas.”

WINSOC is funded by the EU’s Sixth Framework Programme for research and is due to finish in February 2009.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89979

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>