Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless networks: Mobile devices keep track

22.11.2012
A more sensitive technique for determining user position could lead to improved location-based mobile services

Many mobile-phone applications (apps) use spatial positioning technology to present their user with location-specific information such as directions to nearby amenities.

By simultaneously predicting the location of the mobile-user and the data access points, or hotspots, improved accuracy of positioning is now available, thanks to an international research team including Sinno Jialin Pan from the A*STAR Institute for Infocomm Research1. Software developers expect that such improvements will enable a whole new class of apps that can react to small changes in position.

Traditionally, device position was determined by the Global Positioning System (GPS) that uses satellites to triangulate approximate location, but its accuracy falters when the mobile device is indoors. An alternative approach is to use the ‘received signal strength’ (RSS) from local transmitters. Attenuation of radio waves by walls can limit accuracy; and, it is difficult to predict signals in complex, obstacle-filled environments.

Software developers have tried to circumvent these problems by using so-called ‘learning-based techniques’ that identify correlations between RSS values and access-point placement. Such systems do not necessarily require prior knowledge of the hotspot locations; rather they ‘learn’ from data collected on a mobile device. This also has drawbacks: the amount of data can be large, making calibration time consuming. Changes in the environment can also outdate the calibration.

Pan and his co-workers reduced this calibration effort in an experimental demonstration of a protocol that calculates both the positions of the device and the access points simultaneously — a process they call colocalization. “Integrating the two location-estimation tasks into a unified mathematical model means that we can fully exploit the correlations between mobile-device and hotspot position,” explains Pan.

First, the researchers trained a learning-based system with the signal-strength values received from access points at selected places in the area of interest. They used this information to calibrate a probabilistic ‘location-estimation’ system. Then, they approximated the location from the learned model using signal strength samples received in real-time from the access points.

Experimental trials showed that this approach not only required less calibration, but it was more accurate than other state-of-the-art systems. “We next want to apply the method to a larger-scale environment,” says Pan. “We also want to find ways to make use of the estimated locations to provide more useful information, such as location-based advertising.” As this technique could help robots navigate by themselves, it may also have important implications for the burgeoning field of robotics.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Pan, J. J., Pan, S. J., Yin, J., Ni, L. M. & Yang, Q. Tracking mobile users in wireless networks via semi-supervised colocalization. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 587–600 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>