Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless networks: Mobile devices keep track

22.11.2012
A more sensitive technique for determining user position could lead to improved location-based mobile services

Many mobile-phone applications (apps) use spatial positioning technology to present their user with location-specific information such as directions to nearby amenities.

By simultaneously predicting the location of the mobile-user and the data access points, or hotspots, improved accuracy of positioning is now available, thanks to an international research team including Sinno Jialin Pan from the A*STAR Institute for Infocomm Research1. Software developers expect that such improvements will enable a whole new class of apps that can react to small changes in position.

Traditionally, device position was determined by the Global Positioning System (GPS) that uses satellites to triangulate approximate location, but its accuracy falters when the mobile device is indoors. An alternative approach is to use the ‘received signal strength’ (RSS) from local transmitters. Attenuation of radio waves by walls can limit accuracy; and, it is difficult to predict signals in complex, obstacle-filled environments.

Software developers have tried to circumvent these problems by using so-called ‘learning-based techniques’ that identify correlations between RSS values and access-point placement. Such systems do not necessarily require prior knowledge of the hotspot locations; rather they ‘learn’ from data collected on a mobile device. This also has drawbacks: the amount of data can be large, making calibration time consuming. Changes in the environment can also outdate the calibration.

Pan and his co-workers reduced this calibration effort in an experimental demonstration of a protocol that calculates both the positions of the device and the access points simultaneously — a process they call colocalization. “Integrating the two location-estimation tasks into a unified mathematical model means that we can fully exploit the correlations between mobile-device and hotspot position,” explains Pan.

First, the researchers trained a learning-based system with the signal-strength values received from access points at selected places in the area of interest. They used this information to calibrate a probabilistic ‘location-estimation’ system. Then, they approximated the location from the learned model using signal strength samples received in real-time from the access points.

Experimental trials showed that this approach not only required less calibration, but it was more accurate than other state-of-the-art systems. “We next want to apply the method to a larger-scale environment,” says Pan. “We also want to find ways to make use of the estimated locations to provide more useful information, such as location-based advertising.” As this technique could help robots navigate by themselves, it may also have important implications for the burgeoning field of robotics.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Pan, J. J., Pan, S. J., Yin, J., Ni, L. M. & Yang, Q. Tracking mobile users in wireless networks via semi-supervised colocalization. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 587–600 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>