Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless networks: Mobile devices keep track

22.11.2012
A more sensitive technique for determining user position could lead to improved location-based mobile services

Many mobile-phone applications (apps) use spatial positioning technology to present their user with location-specific information such as directions to nearby amenities.

By simultaneously predicting the location of the mobile-user and the data access points, or hotspots, improved accuracy of positioning is now available, thanks to an international research team including Sinno Jialin Pan from the A*STAR Institute for Infocomm Research1. Software developers expect that such improvements will enable a whole new class of apps that can react to small changes in position.

Traditionally, device position was determined by the Global Positioning System (GPS) that uses satellites to triangulate approximate location, but its accuracy falters when the mobile device is indoors. An alternative approach is to use the ‘received signal strength’ (RSS) from local transmitters. Attenuation of radio waves by walls can limit accuracy; and, it is difficult to predict signals in complex, obstacle-filled environments.

Software developers have tried to circumvent these problems by using so-called ‘learning-based techniques’ that identify correlations between RSS values and access-point placement. Such systems do not necessarily require prior knowledge of the hotspot locations; rather they ‘learn’ from data collected on a mobile device. This also has drawbacks: the amount of data can be large, making calibration time consuming. Changes in the environment can also outdate the calibration.

Pan and his co-workers reduced this calibration effort in an experimental demonstration of a protocol that calculates both the positions of the device and the access points simultaneously — a process they call colocalization. “Integrating the two location-estimation tasks into a unified mathematical model means that we can fully exploit the correlations between mobile-device and hotspot position,” explains Pan.

First, the researchers trained a learning-based system with the signal-strength values received from access points at selected places in the area of interest. They used this information to calibrate a probabilistic ‘location-estimation’ system. Then, they approximated the location from the learned model using signal strength samples received in real-time from the access points.

Experimental trials showed that this approach not only required less calibration, but it was more accurate than other state-of-the-art systems. “We next want to apply the method to a larger-scale environment,” says Pan. “We also want to find ways to make use of the estimated locations to provide more useful information, such as location-based advertising.” As this technique could help robots navigate by themselves, it may also have important implications for the burgeoning field of robotics.

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Journal information

Pan, J. J., Pan, S. J., Yin, J., Ni, L. M. & Yang, Q. Tracking mobile users in wireless networks via semi-supervised colocalization. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 587–600 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>