Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless home automation systems reveal more than you would think about user behaviour

24.07.2014

Home automation systems that control domestic lighting, heating, window blinds or door locks offer opportunities for third parties to intrude on the privacy of the inhabitants and gain considerable insight into their behavioural patterns.

This is the conclusion reached by IT security expert Christoph Sorge and his research team at Saarland University. Even data transmitted from encrypted systems can provide information useful to potential burglars. Professor Sorge, who holds the juris Professorship in Legal Informatics at Saarland University, and his research group are currently studying ways to make home automation systems more secure.

Frederik Möllers from Sorge’s team will be presenting the results at the ACM Conference on Security and Privacy in Wireless and Mobile Networks in Oxford on 25 July.

Regulating heating systems to save energy, adjusting lighting levels based on the time of day, watering house plants automatically, and raising or lowering blinds at the required times – the benefits of today’s smart home automation systems are numerous and they are becoming increasingly popular with homeowners.

However, studies by the research group led by Professor Christoph Sorge have shown that these wireless systems can also pose a security risk. ‘Many of the systems do not provide adequate security against unwanted third-party access and therefore threaten the privacy of the inhabitants,’ says Sorge, an expert for IT security, data protection and encryption technology at Saarland University. Sorge and his team have examined how susceptible the systems are to attack.

For the purposes of their study, the researchers took on the role of a malicious attacker. ‘Using a simple mini-PC no bigger in size than a packet of cigarettes we eavesdropped on the wireless home automation systems (HASs) of two volunteers and were thus able to determine just how much information a conventional wireless HAS reveals about its user,’ explains Sorge.

No other information about the users was available to the research group. The result: ‘Non-encrypted systems provide large quantities of data to anyone determined enough to access the data, and the attacker requires no prior knowledge about the system, nor about the user being spied on,’ says Professor Sorge.

‘The data acquired by the attacker can be analysed to extract system commands and status messages, items which reveal a lot about the inhabitants’ behaviour and habits. We were able to determine absence times and to identify home ventilation and heating patterns,’ explains the expert in legal informatics.

The analysis enabled the research group to build up profiles of the inhabitants. Even systems that use encryption technology can supply information to third parties: ‘The results indicate that even when encrypted communication is used, the number of messages exchanged is enough to provide information on absence times,’ says Sorge. Potential attacks can be directed against the functionality of the system or the privacy of the inhabitants. ‘An attacker with malicious intent could use this sort of information to plan a burglary,’ says Sorge.

‘A great deal still needs to be done to make wireless home automation systems secure. Improved data encryption and concealment technologies would be an important step towards protecting the privacy of HAS users,’ explains Professor Sorge. He and his group are currently working on developing technology of this type in collaboration with the University of Paderborn as part of a research project funded by the Federal Ministry of Economics and Energy.

The research work into home automation systems began with a Master’s degree thesis by Andreas Hellmann, who was supervised by Professor Sorge while still at the University of Paderborn. With his research group now based at Saarland University, Professor Sorge is currently continuing research in this area with his research assistant Frederik Möllers, who will be presenting the results of their recent study in Oxford on 25 July.

Background: Christoph Sorge is an expert for IT security, data privacy, secure communications, encryption technologies, electronic signatures, and the use of IT systems in the legal sector. He holds a professorship endowed by juris GmbH at the Institute for Legal Informatics at Saarland University where he and his team teach and conduct research work at the interface of technology and law. Prior to taking up his position in Saarbrücken, Sorge held a Junior Professorship in Network Security at the University of Paderborn.

Contact: Professor Christoph Sorge:
Phone: +49 (0)681 302-5122 (Office: -5120), E-mail: christoph.sorge@uni-saarland.de

German Version of the press release: https://www.idw-online.de/de/news597128

A press photograph is available at http://www.uni-saarland.de/pressefotos and can be used at no charge. Please read and comply with the conditions of use.

Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-2601 or -64091).

Claudia Ehrlich | Universität des Saarlandes

Further reports about: Security Wireless conventional heating privacy technologies

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>