Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless home automation systems reveal more than you would think about user behaviour

24.07.2014

Home automation systems that control domestic lighting, heating, window blinds or door locks offer opportunities for third parties to intrude on the privacy of the inhabitants and gain considerable insight into their behavioural patterns.

This is the conclusion reached by IT security expert Christoph Sorge and his research team at Saarland University. Even data transmitted from encrypted systems can provide information useful to potential burglars. Professor Sorge, who holds the juris Professorship in Legal Informatics at Saarland University, and his research group are currently studying ways to make home automation systems more secure.

Frederik Möllers from Sorge’s team will be presenting the results at the ACM Conference on Security and Privacy in Wireless and Mobile Networks in Oxford on 25 July.

Regulating heating systems to save energy, adjusting lighting levels based on the time of day, watering house plants automatically, and raising or lowering blinds at the required times – the benefits of today’s smart home automation systems are numerous and they are becoming increasingly popular with homeowners.

However, studies by the research group led by Professor Christoph Sorge have shown that these wireless systems can also pose a security risk. ‘Many of the systems do not provide adequate security against unwanted third-party access and therefore threaten the privacy of the inhabitants,’ says Sorge, an expert for IT security, data protection and encryption technology at Saarland University. Sorge and his team have examined how susceptible the systems are to attack.

For the purposes of their study, the researchers took on the role of a malicious attacker. ‘Using a simple mini-PC no bigger in size than a packet of cigarettes we eavesdropped on the wireless home automation systems (HASs) of two volunteers and were thus able to determine just how much information a conventional wireless HAS reveals about its user,’ explains Sorge.

No other information about the users was available to the research group. The result: ‘Non-encrypted systems provide large quantities of data to anyone determined enough to access the data, and the attacker requires no prior knowledge about the system, nor about the user being spied on,’ says Professor Sorge.

‘The data acquired by the attacker can be analysed to extract system commands and status messages, items which reveal a lot about the inhabitants’ behaviour and habits. We were able to determine absence times and to identify home ventilation and heating patterns,’ explains the expert in legal informatics.

The analysis enabled the research group to build up profiles of the inhabitants. Even systems that use encryption technology can supply information to third parties: ‘The results indicate that even when encrypted communication is used, the number of messages exchanged is enough to provide information on absence times,’ says Sorge. Potential attacks can be directed against the functionality of the system or the privacy of the inhabitants. ‘An attacker with malicious intent could use this sort of information to plan a burglary,’ says Sorge.

‘A great deal still needs to be done to make wireless home automation systems secure. Improved data encryption and concealment technologies would be an important step towards protecting the privacy of HAS users,’ explains Professor Sorge. He and his group are currently working on developing technology of this type in collaboration with the University of Paderborn as part of a research project funded by the Federal Ministry of Economics and Energy.

The research work into home automation systems began with a Master’s degree thesis by Andreas Hellmann, who was supervised by Professor Sorge while still at the University of Paderborn. With his research group now based at Saarland University, Professor Sorge is currently continuing research in this area with his research assistant Frederik Möllers, who will be presenting the results of their recent study in Oxford on 25 July.

Background: Christoph Sorge is an expert for IT security, data privacy, secure communications, encryption technologies, electronic signatures, and the use of IT systems in the legal sector. He holds a professorship endowed by juris GmbH at the Institute for Legal Informatics at Saarland University where he and his team teach and conduct research work at the interface of technology and law. Prior to taking up his position in Saarbrücken, Sorge held a Junior Professorship in Network Security at the University of Paderborn.

Contact: Professor Christoph Sorge:
Phone: +49 (0)681 302-5122 (Office: -5120), E-mail: christoph.sorge@uni-saarland.de

German Version of the press release: https://www.idw-online.de/de/news597128

A press photograph is available at http://www.uni-saarland.de/pressefotos and can be used at no charge. Please read and comply with the conditions of use.

Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-2601 or -64091).

Claudia Ehrlich | Universität des Saarlandes

Further reports about: Security Wireless conventional heating privacy technologies

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>