Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless 'Breadcrumbs' That Won’t Become Toast When Baked...or Soggy When Hosed

06.07.2011
When Hansel and Gretel ventured into the forest, they left a trail of breadcrumbs to find their way home. In today's world, cellular phones, Global Positioning System (GPS), WiFi, and Bluetooth are the digital signals that connect us to friends, family, and colleagues while helping us find our location and map our routes.

Yet, despite the ubiquity of such devices, with few exceptions, today's firefighters still rely on 20th-century radios, whose outdated analog signals have trouble penetrating debris and concrete. When a firefighter heroically plunges into a smoke-filled building, tunnel, or forest, a UHF radio or, for that matter, even a GPS satellite signal won't follow. The firefighter vanishes from the map.

For a first responder, radio silence can be lethal.
That's why the Department of Homeland Security's (DHS's) Science and Technology Directorate (S&T) is combining two previously developed heatproof and waterproof wireless monitors with a newly developed technology. Working together, the three technologies could lead to a life-saving solution.

One device, the Geospatial Location Accountability and Navigation System for Emergency Responders (GLANSER), crams a microwave radio, a lightweight battery, and a suite of navigation devices into a tracking device the size of a paperback book. Back at the fire truck, GLANSER's signals are received and transmitted by a small, USB-powered base station plugged into a laptop. As firefighters move from room to room and floor to floor, the laptop display animates their every step.

A second device, the Physiological Health Assessment System for Emergency Responders (PHASER), can monitor a firefighter's body temperature, blood pressure, and pulse, relaying these vitals back to the base station. If a firefighter falls or faints, fellow firefighters can race in, quickly find him, and bring him to safety, guided by GLANSER.

Like the first cordless phones, GLANSER and PHASER transmit at 900 MHz—a frequency that can penetrate walls, given a decent-sized transmitter. But because of their portable size, the transmitters are extremely modest. Their signals could be stopped by a wall, or—in a wildfire—by a wall of trees, unless relayed by routers.

That presents an infernal challenge.

What's needed is a self-powered router that can take the heat. S&T is developing a tiny throwaway router, measuring one inch square by ½ inch thick, that's waterproof and heat-resistant up to 500° F. The Wireless Intelligent Sensor Platform for Emergency Responders, or WISPER, contains a two-way digital radio, antenna, and 3-volt lithium cell.

Here's how it works: Each firefighter enters a burning building with five routers loaded into a belt-mounted waterproof canister. If a firefighter steps behind concrete or beyond radio range, the base station orders his canister to drop a "breadcrumb." The dropped routers arrange themselves into a network. If a router accidentally gets kicked down a stairwell or firehosed under a couch, the WISPER network will automatically reconfigure.

To an embattled firefighter, a handful of these smart "breadcrumbs" could spell the difference between life and death.

To extract the most life from the router's tiny battery, WISPER's designers turned to a simple, low-power communications protocol, ZigBee. ZigBee is tortoise-slow by design; it trades speed for battery life, telegraphing no more than 100 kilobits per second (kbps)—a rate that's more than 99 percent slower than WiFi.

"Throw in smoke, firehose mist, stairwells, and walls, and you're down to maybe 10 kbps. But that's fast enough to tell an incident commander the whereabouts (via GLANSER) and health (via PHASER) of every firefighter in the blaze," explains Jalal Mapar, WISPER's project manager in S&T's Infrastructure Protection and Disaster Management Division. "We're not streaming video that needs a lot of bandwidth, just vital signs and coordinates."

WISPER's router, dispenser, and tiny USB base station were developed by Oceanit Laboratories, Inc., of Honolulu, and the University of Virginia's Department of Computer Science under an S&T Small Business Innovation Research (SBIR) program.

In March 2011, Oceanit and UVA demonstrated WISPER for S&T at a FEMA office in Arlington, Virginia. Simulating a squad of firefighters, three router-toting researchers fanned out, dodging around corners, stepping down stairwells. In test after test, their signals stayed strong, even at a range of 150 feet.

Now that the SBIR project is proven to be a surefire success, S&T hopes a maker will step forward to produce the routers in volume. Once a commercial entity begins production, S&T's Test & Evaluation and Standards Office will evaluate a sample product to ensure that it meets the stated performance criteria and for consistency. S&T will also set industry standards so that other manufacturers will have a set of specifications for design and performance.

"We've demonstrated that it works," says Mapar. "Now we just need a private-sector partner to add fuel to the fire."

Dear Editors, pls let reporters know that there are several You-Tube videos that illustrate how this technology works. Search under Wisper.

John Verrico | Newswise Science News
Further information:
http://www.gov

Further reports about: battery Breadcrumbs Emergency GPS data Oceanit PHASER WISPER Wireless LAN

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>