Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wi-Fi signals enable gesture recognition throughout entire home

06.06.2013
Forget to turn off the lights before leaving the apartment?

No problem. Just raise your hand, finger-swipe the air, and your lights will power down. Want to change the song playing on your music system in the other room? Move your hand to the right and flip through the songs.


U of Washington

A hand gesture changes the TV channel using WiSee technology.

University of Washington computer scientists have developed gesture-recognition technology that brings this a step closer to reality. Researchers have shown it’s possible to leverage Wi-Fi signals around us to detect specific movements without needing sensors on the human body or cameras.

By using an adapted Wi-Fi router and a few wireless devices in the living room, users could control their electronics and household appliances from any room in the home with a simple gesture.

“This is repurposing wireless signals that already exist in new ways,” said lead researcher Shyam Gollakota, a UW assistant professor of computer science and engineering. “You can actually use wireless for gesture recognition without needing to deploy more sensors.”

The UW research team that includes Shwetak Patel, an assistant professor of computer science and engineering and of electrical engineering and his lab, published their findings online this week. This technology, which they call “WiSee,” is to appear at The 19th Annual International Conference on Mobile Computing and Networking.

The concept is similar to Xbox Kinect – a commercial product that uses cameras to recognize gestures – but the UW technology is simpler, cheaper and doesn’t require users to be in the same room as the device they want to control. That’s because Wi-Fi signals can travel through walls and aren’t bound by line-of-sight or sound restrictions.

The UW researchers built a “smart” receiver device that essentially listens to all of the wireless transmissions coming from devices throughout a home, including smartphones, laptops and tablets. A standard Wi-Fi router could be adapted to function as a receiver.

When a person moves, there is a slight change in the frequency of the wireless signal. Moving a hand or foot causes the receiver to detect a pattern of changes known as the Doppler frequency shift.

These frequency changes are very small – only several hertz – when compared with Wi-Fi signals that have a 20 megahertz bandwidth and operate at 5 gigahertz. Researchers developed an algorithm to detect these slight shifts. The technology also accounts for gaps in wireless signals when devices aren’t transmitting.

The technology can identify nine different whole-body gestures, ranging from pushing, pulling and punching to full-body bowling. The researchers tested these gestures with five users in a two-bedroom apartment and an office environment. Out of the 900 gestures performed, WiSee accurately classified 94 percent of them.

“This is the first whole-home gesture recognition system that works without either requiring instrumentation of the user with sensors or deploying cameras in every room,” said Qifan Pu, a collaborator and visiting student at the UW.

The system requires one receiver with multiple antennas. Intuitively, each antenna tunes into a specific user’s movements, so as many as five people can move simultaneously in the same residence without confusing the receiver.
If a person wants to use the WiSee, she would perform a specific repetition gesture sequence to get access to the receiver. This password concept would also keep the system secure and prevent a neighbor – or hacker – from controlling a device in your home.

Once the wireless receiver locks onto the user, she can perform normal gestures to interact with the devices and appliances in her home. The receiver would be programmed to understand that a specific gesture corresponds to a specific device.

Collaborators Patel and Sidhant Gupta, a doctoral student in computer science and engineering, have worked with Microsoft Research on two similar technologies – SoundWave, which uses sound, and Humantenna, which uses radiation from electrical wires – that both sense whole-body gestures. But WiSee stands apart because it doesn’t require the user to be in the same room as the receiver or the device.

In this way, a smart home could become a reality, allowing you to turn off the oven timer with a simple wave of the hand, or turn on the coffeemaker from your bed.

The researchers plan to look next at the ability to control multiple devices at once. The initial work was funded by the UW department of computer science and engineering.

For more information, contact Gollakota and Patel at wisee-contact@cs.washington.edu or 206-618-7888

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2013/06/04/wi-fi-signals-enable-gesture-recognition-throughout-entire-home/

More articles from Information Technology:

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Paint job transforms walls into sensors, interactive surfaces
24.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>