Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wi-Fi signals enable gesture recognition throughout entire home

06.06.2013
Forget to turn off the lights before leaving the apartment?

No problem. Just raise your hand, finger-swipe the air, and your lights will power down. Want to change the song playing on your music system in the other room? Move your hand to the right and flip through the songs.


U of Washington

A hand gesture changes the TV channel using WiSee technology.

University of Washington computer scientists have developed gesture-recognition technology that brings this a step closer to reality. Researchers have shown it’s possible to leverage Wi-Fi signals around us to detect specific movements without needing sensors on the human body or cameras.

By using an adapted Wi-Fi router and a few wireless devices in the living room, users could control their electronics and household appliances from any room in the home with a simple gesture.

“This is repurposing wireless signals that already exist in new ways,” said lead researcher Shyam Gollakota, a UW assistant professor of computer science and engineering. “You can actually use wireless for gesture recognition without needing to deploy more sensors.”

The UW research team that includes Shwetak Patel, an assistant professor of computer science and engineering and of electrical engineering and his lab, published their findings online this week. This technology, which they call “WiSee,” is to appear at The 19th Annual International Conference on Mobile Computing and Networking.

The concept is similar to Xbox Kinect – a commercial product that uses cameras to recognize gestures – but the UW technology is simpler, cheaper and doesn’t require users to be in the same room as the device they want to control. That’s because Wi-Fi signals can travel through walls and aren’t bound by line-of-sight or sound restrictions.

The UW researchers built a “smart” receiver device that essentially listens to all of the wireless transmissions coming from devices throughout a home, including smartphones, laptops and tablets. A standard Wi-Fi router could be adapted to function as a receiver.

When a person moves, there is a slight change in the frequency of the wireless signal. Moving a hand or foot causes the receiver to detect a pattern of changes known as the Doppler frequency shift.

These frequency changes are very small – only several hertz – when compared with Wi-Fi signals that have a 20 megahertz bandwidth and operate at 5 gigahertz. Researchers developed an algorithm to detect these slight shifts. The technology also accounts for gaps in wireless signals when devices aren’t transmitting.

The technology can identify nine different whole-body gestures, ranging from pushing, pulling and punching to full-body bowling. The researchers tested these gestures with five users in a two-bedroom apartment and an office environment. Out of the 900 gestures performed, WiSee accurately classified 94 percent of them.

“This is the first whole-home gesture recognition system that works without either requiring instrumentation of the user with sensors or deploying cameras in every room,” said Qifan Pu, a collaborator and visiting student at the UW.

The system requires one receiver with multiple antennas. Intuitively, each antenna tunes into a specific user’s movements, so as many as five people can move simultaneously in the same residence without confusing the receiver.
If a person wants to use the WiSee, she would perform a specific repetition gesture sequence to get access to the receiver. This password concept would also keep the system secure and prevent a neighbor – or hacker – from controlling a device in your home.

Once the wireless receiver locks onto the user, she can perform normal gestures to interact with the devices and appliances in her home. The receiver would be programmed to understand that a specific gesture corresponds to a specific device.

Collaborators Patel and Sidhant Gupta, a doctoral student in computer science and engineering, have worked with Microsoft Research on two similar technologies – SoundWave, which uses sound, and Humantenna, which uses radiation from electrical wires – that both sense whole-body gestures. But WiSee stands apart because it doesn’t require the user to be in the same room as the receiver or the device.

In this way, a smart home could become a reality, allowing you to turn off the oven timer with a simple wave of the hand, or turn on the coffeemaker from your bed.

The researchers plan to look next at the ability to control multiple devices at once. The initial work was funded by the UW department of computer science and engineering.

For more information, contact Gollakota and Patel at wisee-contact@cs.washington.edu or 206-618-7888

Michelle Ma | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2013/06/04/wi-fi-signals-enable-gesture-recognition-throughout-entire-home/

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>