Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webcam technology used to measure medications' effects on the heart

04.05.2011
Researchers use basic webcam technology to measure the effects of medications on the heart in real time

A common component in webcams may help drug makers and prescribers address a common side-effect of drugs called cardiotoxicity, an unhealthy change in the way the heart beats. Researchers at Brigham and Women's Hospital (BWH) have used the basic webcam technology to create a tool to look at the effects of medications in real time on heart cells, called cardiomyocytes. These findings were published in the journal, Lab on a Chip on April 11, 2011.

Researchers developed a cost-effective, portable cell-based biosensor for real time cardiotoxicity detection using an image sensor from a webcam. They took cardiomyocytes, derived from mouse stem cells, and introduced the cells to different drugs. Using the biosensor, the researchers were able to monitor the beating rate of the cardiomyocytes in real time and detect any drug-induced changes in the beating rates.

The technology provides a simple approach to perform evaluative studies of different drugs effects on cardiac cells. Cardiotoxicity is a significant problem in drug development, with more than 30 percent of drugs withdrawn from the market between 1996 to 2006 related to cardiac dysfunction. "Assessing the toxic effects of new drugs during the early phases of drug development can accelerate the drug discovery process, resulting in significant cost and time savings, and leading to faster treatment discovery," said Ali Khademhosseini, PhD, of the Center for Biomedical Engineering at the Department of Medicine at BWH.

"This technology could also play a role in personalized medicine," said Sang Bok Kim, PhD, a Research Fellow in the Renal Division at BWH. "By first extracting somatic cells from patients which can be reprogrammed to stem cells called induced pluripotent stem (iPS) cells. Then these iPS cells can be differentiated into cardiac cells to be studied, the biosensor can monitor the cardiac cells as they're introduced to a medication, providing a glimpse at how the drugs may affect the individual's heart, and thus shaping the treatment plan for that person."

Monitoring cardiac cells in the past required using expensive equipment that had a limited measurement area. This low cost (less than $10) biosensor is compatible with conventional equipment but will enable reliable, yet faster and more cost-effective studies.

"Our next goal is to combine our detection sensor with our microwell arrays and perform screening studies of thousands of drugs to cardiac cells simultaneously in a fast and reliable manner," said Dr. Khademhosseini.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), www.brighamandwomens.org/research, BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org

Holly Brown-Ayers | EurekAlert!
Further information:
http://www.brighamandwomens.org

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>